{"title":"Non-minimal coupling of scalar fields in the dark sector and generalization of the top-hat collapse","authors":"Priyanka Saha, Dipanjan Dey, Kaushik Bhattacharya","doi":"10.1140/epjc/s10052-025-14080-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we propose a new way to handle interactions between two scalar fields, in the cosmological backdrop, where one scalar field oscillates rapidly in the cosmological time scale while the other one evolves without showing any periodic behavior. We have interpreted the rapidly oscillating scalar field as the dark matter candidate while the other scalar field is the canonical quintessence field or the non-canonical phantom field. A model of a generalized top-hat-like collapse is developed where the dark sector is composed of the aforementioned scalar fields. We show how the non-minimal coupling in the dark sector affects the gravitational collapse of a slightly overdense spherical patch of the universe. The results show that one can have both unclustered and clustered dark energy in such collapses, the result depends upon the magnitude of the non-minimal coupling strength.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14080-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14080-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we propose a new way to handle interactions between two scalar fields, in the cosmological backdrop, where one scalar field oscillates rapidly in the cosmological time scale while the other one evolves without showing any periodic behavior. We have interpreted the rapidly oscillating scalar field as the dark matter candidate while the other scalar field is the canonical quintessence field or the non-canonical phantom field. A model of a generalized top-hat-like collapse is developed where the dark sector is composed of the aforementioned scalar fields. We show how the non-minimal coupling in the dark sector affects the gravitational collapse of a slightly overdense spherical patch of the universe. The results show that one can have both unclustered and clustered dark energy in such collapses, the result depends upon the magnitude of the non-minimal coupling strength.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.