{"title":"Improving Sequential Recommendations via Bidirectional Temporal Data Augmentation With Pre-Training","authors":"Juyong Jiang;Peiyan Zhang;Yingtao Luo;Chaozhuo Li;Jae Boum Kim;Kai Zhang;Senzhang Wang;Sunghun Kim;Philip S. Yu","doi":"10.1109/TKDE.2025.3546035","DOIUrl":null,"url":null,"abstract":"Sequential recommendation systems are integral to discerning temporal user preferences. Yet, the task of learning from abbreviated user interaction sequences poses a notable challenge. Data augmentation has been identified as a potent strategy to enhance the informational richness of these sequences. Traditional augmentation techniques, such as item randomization, may disrupt the inherent temporal dynamics. Although recent advancements in reverse chronological pseudo-item generation have shown promise, they can introduce temporal discrepancies when assessed in a natural chronological context. In response, we introduce a sophisticated approach, Bidirectional temporal data Augmentation with pre-training (BARec). Our approach leverages bidirectional temporal augmentation and knowledge-enhanced fine-tuning to synthesize authentic pseudo-prior items that <italic>retain user preferences and capture deeper item semantic correlations</i>, thus boosting the model’s expressive power. Our comprehensive experimental analysis on five benchmark datasets confirms the superiority of BARec across both short and elongated sequence contexts. Moreover, theoretical examination and case study offer further insight into the model’s logical processes and interpretability.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2652-2664"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904280/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sequential recommendation systems are integral to discerning temporal user preferences. Yet, the task of learning from abbreviated user interaction sequences poses a notable challenge. Data augmentation has been identified as a potent strategy to enhance the informational richness of these sequences. Traditional augmentation techniques, such as item randomization, may disrupt the inherent temporal dynamics. Although recent advancements in reverse chronological pseudo-item generation have shown promise, they can introduce temporal discrepancies when assessed in a natural chronological context. In response, we introduce a sophisticated approach, Bidirectional temporal data Augmentation with pre-training (BARec). Our approach leverages bidirectional temporal augmentation and knowledge-enhanced fine-tuning to synthesize authentic pseudo-prior items that retain user preferences and capture deeper item semantic correlations, thus boosting the model’s expressive power. Our comprehensive experimental analysis on five benchmark datasets confirms the superiority of BARec across both short and elongated sequence contexts. Moreover, theoretical examination and case study offer further insight into the model’s logical processes and interpretability.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.