{"title":"Efficient PMU Data Compression Using Enhanced Graph Filtering Enabled Principal Component Analysis","authors":"Manish Pandit;Ranjana Sodhi","doi":"10.1109/TKDE.2025.3544768","DOIUrl":null,"url":null,"abstract":"Phasor Measurement Units (PMUs) are state-of-the-art measuring devices that capture high-resolution time-synchronized voltage and current phasor measurements in wide area monitoring systems (WAMS). Their usage for various real-time applications demands a huge amount of data collected from multiple PMUs to be transmitted from the local phasor data concentrator (PDC) to the control centre. To optimize the requirements of bandwidth to transmit the data as well as to store the data, an efficient synchrophasor data compression technique is desired. To this end, this paper presents a 3-stage data compression scheme in which Stage-1 performs the accumulation of the data matrix from the optimally placed PMUs in WAMS into the local PDC. The data is then passed through a novel Ramanujan's sum-based fault window detection algorithm to identify the fault within the PMU data matrix in Stage-2. Finally, Stage-3 proposes an enhanced graph filtering-enabled principal component analysis scheme which expands the notion of conventional PCA techniques into the graph domain to compress the data. The performance of the proposed scheme is verified on the IEEE 14-bus system and New England 39-bus system. Further, practical applicability of the proposed method is validated on field PMU data collected from EPFL campus in Switzerland.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2488-2500"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10899887/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Phasor Measurement Units (PMUs) are state-of-the-art measuring devices that capture high-resolution time-synchronized voltage and current phasor measurements in wide area monitoring systems (WAMS). Their usage for various real-time applications demands a huge amount of data collected from multiple PMUs to be transmitted from the local phasor data concentrator (PDC) to the control centre. To optimize the requirements of bandwidth to transmit the data as well as to store the data, an efficient synchrophasor data compression technique is desired. To this end, this paper presents a 3-stage data compression scheme in which Stage-1 performs the accumulation of the data matrix from the optimally placed PMUs in WAMS into the local PDC. The data is then passed through a novel Ramanujan's sum-based fault window detection algorithm to identify the fault within the PMU data matrix in Stage-2. Finally, Stage-3 proposes an enhanced graph filtering-enabled principal component analysis scheme which expands the notion of conventional PCA techniques into the graph domain to compress the data. The performance of the proposed scheme is verified on the IEEE 14-bus system and New England 39-bus system. Further, practical applicability of the proposed method is validated on field PMU data collected from EPFL campus in Switzerland.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.