Style Feature Extraction Using Contrastive Conditioned Variational Autoencoders With Mutual Information Constraints

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Suguru Yasutomi;Toshihisa Tanaka
{"title":"Style Feature Extraction Using Contrastive Conditioned Variational Autoencoders With Mutual Information Constraints","authors":"Suguru Yasutomi;Toshihisa Tanaka","doi":"10.1109/TKDE.2025.3543383","DOIUrl":null,"url":null,"abstract":"Extracting fine-grained features such as styles from unlabeled data is crucial for data analysis. Unsupervised methods such as variational autoencoders (VAEs) can extract styles that are usually mixed with other features. Conditional VAEs (CVAEs) can isolate styles using class labels; however, there are no established methods to extract only styles using unlabeled data. In this paper, we propose a CVAE-based method that extracts style features using only unlabeled data. The proposed model consists of a contrastive learning (CL) part that extracts style-independent features and a CVAE part that extracts style features. The CL model learns representations independent of data augmentation, which can be viewed as a perturbation in styles, in a self-supervised manner. Considering the style-independent features from the pretrained CL model as a condition, the CVAE learns to extract only styles. Additionally, we introduce a constraint based on mutual information between the CL and VAE features to prevent the CVAE from ignoring the condition. Experiments conducted using two simple datasets, MNIST and an original dataset based on Google Fonts, demonstrate that the proposed method can efficiently extract style features. Further experiments using real-world natural image datasets were also conducted to illustrate the method’s extendability.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"3001-3014"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891874","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891874/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Extracting fine-grained features such as styles from unlabeled data is crucial for data analysis. Unsupervised methods such as variational autoencoders (VAEs) can extract styles that are usually mixed with other features. Conditional VAEs (CVAEs) can isolate styles using class labels; however, there are no established methods to extract only styles using unlabeled data. In this paper, we propose a CVAE-based method that extracts style features using only unlabeled data. The proposed model consists of a contrastive learning (CL) part that extracts style-independent features and a CVAE part that extracts style features. The CL model learns representations independent of data augmentation, which can be viewed as a perturbation in styles, in a self-supervised manner. Considering the style-independent features from the pretrained CL model as a condition, the CVAE learns to extract only styles. Additionally, we introduce a constraint based on mutual information between the CL and VAE features to prevent the CVAE from ignoring the condition. Experiments conducted using two simple datasets, MNIST and an original dataset based on Google Fonts, demonstrate that the proposed method can efficiently extract style features. Further experiments using real-world natural image datasets were also conducted to illustrate the method’s extendability.
基于互信息约束的对比条件变分自编码器的风格特征提取
从未标记数据中提取细粒度特征(如样式)对于数据分析至关重要。诸如变分自编码器(VAEs)之类的无监督方法可以提取通常与其他特征混合的样式。条件VAEs (CVAEs)可以使用类标签隔离样式;但是,目前还没有确定的方法来仅使用未标记的数据提取样式。在本文中,我们提出了一种基于cvee的方法,该方法仅使用未标记的数据提取样式特征。该模型包括提取风格无关特征的对比学习(CL)部分和提取风格特征的CVAE部分。CL模型以自监督的方式学习独立于数据增强的表示,这可以看作是风格的扰动。以预训练CL模型的风格无关特征为条件,CVAE学习只提取风格。此外,我们引入了基于CL和VAE特征之间互信息的约束,以防止CVAE忽略条件。使用MNIST和基于谷歌Fonts的原始数据集进行的实验表明,该方法可以有效地提取样式特征。使用真实世界的自然图像数据集进行了进一步的实验,以说明该方法的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信