A Universal Pre-Training and Prompting Framework for General Urban Spatio-Temporal Prediction

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuan Yuan;Jingtao Ding;Jie Feng;Depeng Jin;Yong Li
{"title":"A Universal Pre-Training and Prompting Framework for General Urban Spatio-Temporal Prediction","authors":"Yuan Yuan;Jingtao Ding;Jie Feng;Depeng Jin;Yong Li","doi":"10.1109/TKDE.2025.3545948","DOIUrl":null,"url":null,"abstract":"Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergency response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging. Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios. Extensive experiments on more than 20 spatio-temporal scenarios, including grid-based data and graph-based data, demonstrate UniST’s efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2212-2225"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904327/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergency response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging. Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios. Extensive experiments on more than 20 spatio-temporal scenarios, including grid-based data and graph-based data, demonstrate UniST’s efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信