Improved AFSA-Based Energy-Aware Content Caching Strategy for UAV-Assisted VEC

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kejun Long;Chunlin Li;Kun Jiang;Shaohua Wan
{"title":"Improved AFSA-Based Energy-Aware Content Caching Strategy for UAV-Assisted VEC","authors":"Kejun Long;Chunlin Li;Kun Jiang;Shaohua Wan","doi":"10.1109/TSUSC.2024.3444949","DOIUrl":null,"url":null,"abstract":"UAV-assisted VEC can provide content caching services for vehicles by flying close to the vehicles for vehicle's QoS. However, in real-world scenarios with traffic congestion, due to the battery capacity and cache space limitations of UAVs, low content response speed and high response latency may occur. Based on this, we proposed a dynamic energy consumption-based content caching strategy in UAV-assisted VEC. We use the PSO algorithm to solve the problem and obtain the optimal UAV deployment location. For content caching, we construct a content caching model by considering UAV deployment, vehicle user preference, UAV cache capacity, and UAV energy consumption with the goal of minimizing content request latency. In addition, we propose an IAFSA-based content caching strategy. We reduce the solution space of the fish swarm algorithm, decrease the number of caching decisions, and improve the convergence performance of AFSA by employing dynamic horizons and step sizes. Experimental results show that the proposed IAFSA effectively reduces the average content request latency of the vehicle, improves the cache hit rate, and reduces the number of content return trips. Particularly, the proposed strategy reduces the average content request latency by more than 9.84% compared to the baseline algorithm.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 2","pages":"366-377"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638235/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

UAV-assisted VEC can provide content caching services for vehicles by flying close to the vehicles for vehicle's QoS. However, in real-world scenarios with traffic congestion, due to the battery capacity and cache space limitations of UAVs, low content response speed and high response latency may occur. Based on this, we proposed a dynamic energy consumption-based content caching strategy in UAV-assisted VEC. We use the PSO algorithm to solve the problem and obtain the optimal UAV deployment location. For content caching, we construct a content caching model by considering UAV deployment, vehicle user preference, UAV cache capacity, and UAV energy consumption with the goal of minimizing content request latency. In addition, we propose an IAFSA-based content caching strategy. We reduce the solution space of the fish swarm algorithm, decrease the number of caching decisions, and improve the convergence performance of AFSA by employing dynamic horizons and step sizes. Experimental results show that the proposed IAFSA effectively reduces the average content request latency of the vehicle, improves the cache hit rate, and reduces the number of content return trips. Particularly, the proposed strategy reduces the average content request latency by more than 9.84% compared to the baseline algorithm.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信