{"title":"Cybersecurity Solutions and Techniques for Internet of Things Integration in Combat Systems","authors":"Amirmohammad Pasdar;Nickolaos Koroniotis;Marwa Keshk;Nour Moustafa;Zahir Tari","doi":"10.1109/TSUSC.2024.3443256","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) has enabled pervasive networking and multi-modal sensing, offering various services such as remote operations and augmenting existing processes. The military setting has increasingly and notably adopted IoT technologies, such as sensor-rich drones or autonomous vehicles, which provide military personnel with enhanced situational awareness, faster decision-making capabilities, and improved operational precision. However, integrating IoT into military systems introduces new security challenges due to increased connectivity and susceptibility to vulnerabilities. Cyberattacks on military IoT systems can have severe consequences, including operational disruptions and compromises of sensitive information. This article proposes a new perspective on examining threat models in IoT-enhanced combat systems, emphasising approaches for identifying threats, conducting vulnerability assessments, and suggesting countermeasures. It delves into the characteristics and structures of IoT-enhanced combat systems, exploring technical implementations and technologies. Additionally, it outlines five significant areas of focus, including blockchain, machine learning, game theory, protocols, and algorithms, to enhance understanding of IoT-enhanced combat systems. The insights gained from this analysis can inform the development of secure and resilient military IoT systems, ultimately enhancing the safety and effectiveness of military operations.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 2","pages":"345-365"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636816/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) has enabled pervasive networking and multi-modal sensing, offering various services such as remote operations and augmenting existing processes. The military setting has increasingly and notably adopted IoT technologies, such as sensor-rich drones or autonomous vehicles, which provide military personnel with enhanced situational awareness, faster decision-making capabilities, and improved operational precision. However, integrating IoT into military systems introduces new security challenges due to increased connectivity and susceptibility to vulnerabilities. Cyberattacks on military IoT systems can have severe consequences, including operational disruptions and compromises of sensitive information. This article proposes a new perspective on examining threat models in IoT-enhanced combat systems, emphasising approaches for identifying threats, conducting vulnerability assessments, and suggesting countermeasures. It delves into the characteristics and structures of IoT-enhanced combat systems, exploring technical implementations and technologies. Additionally, it outlines five significant areas of focus, including blockchain, machine learning, game theory, protocols, and algorithms, to enhance understanding of IoT-enhanced combat systems. The insights gained from this analysis can inform the development of secure and resilient military IoT systems, ultimately enhancing the safety and effectiveness of military operations.