Stochastic Computation Model for Solar Panel Size and Cost of Sustainable IoT Networks

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Atul Banotra;Deepak Mishra;Sudhakar Modem
{"title":"Stochastic Computation Model for Solar Panel Size and Cost of Sustainable IoT Networks","authors":"Atul Banotra;Deepak Mishra;Sudhakar Modem","doi":"10.1109/TSUSC.2024.3443450","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) applications require uninterrupted network operation which is often hindered by battery energy constraints. Literature suggests that solar energy harvesting is a promising approach to powering IoT devices in a sustainable manner. However, the available literature overlooks key factors of determining effective solar panel size and cost while considering the IoT consumption for sustainable operation. This article tackles these pivotal aspects by investigating viability of commercially available solar panels as a sustainable energy source for IoT applications. A novel stochastic computation model is introduced to characterize the unpredictability of solar irradiance across three different time regions of the day. By employing distribution fitting models, the proposed computation model accurately determines the required solar panel size in cm<inline-formula><tex-math>$^{2}$</tex-math></inline-formula> and panel cost in Indian Rupees for the sustainable operation of the IoT application. Further, the proposed model incorporates the assessment of outage and sustainability probabilities for user-specified solar panel size and cost. These insights are significant in settings where energy efficiency and sustainability are crucial. Numerical results are presented to validate the derived distribution models and performance metrics for sustainable IoT applications. The effectiveness and accuracy of the proposed model are validated by comparing results with baseline model.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 2","pages":"317-332"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636814/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) applications require uninterrupted network operation which is often hindered by battery energy constraints. Literature suggests that solar energy harvesting is a promising approach to powering IoT devices in a sustainable manner. However, the available literature overlooks key factors of determining effective solar panel size and cost while considering the IoT consumption for sustainable operation. This article tackles these pivotal aspects by investigating viability of commercially available solar panels as a sustainable energy source for IoT applications. A novel stochastic computation model is introduced to characterize the unpredictability of solar irradiance across three different time regions of the day. By employing distribution fitting models, the proposed computation model accurately determines the required solar panel size in cm$^{2}$ and panel cost in Indian Rupees for the sustainable operation of the IoT application. Further, the proposed model incorporates the assessment of outage and sustainability probabilities for user-specified solar panel size and cost. These insights are significant in settings where energy efficiency and sustainability are crucial. Numerical results are presented to validate the derived distribution models and performance metrics for sustainable IoT applications. The effectiveness and accuracy of the proposed model are validated by comparing results with baseline model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信