Security Enhancement in AAV Swarms: A Case Study Using Federated Learning and SHAP Analysis

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sushmitha Halli Sudhakara;Lida Haghnegahdar
{"title":"Security Enhancement in AAV Swarms: A Case Study Using Federated Learning and SHAP Analysis","authors":"Sushmitha Halli Sudhakara;Lida Haghnegahdar","doi":"10.1109/OJITS.2025.3550792","DOIUrl":null,"url":null,"abstract":"As cyber-physical systems (CPSs) increasingly integrate physical and digital realms, securing critical infrastructure, such as the Port of Virginia, becomes paramount. Among CPSs, Autonomous Aerial Vehicles (AAVs) are vital for monitoring, communication, and supporting the command and control through remote reconnaissance and surveillance missions. These AAV applications often require coordination, planning, and runtime reconfiguration, traditionally managed by human decision-makers. However, this approach has limitations, as extensively documented in the literature. Artificial Intelligence (AI) has emerged as a pivotal tool to address these limitations, enhancing risk mitigation and informed decision-making. This research proposes a machine learning (ML) based security mechanism, leveraging federated learning and FedAvg for weight averaging, combined with SHAP analysis to identify key contributing features. This AI-based system requires less human intervention and is more effective in detecting novel attacks than traditional intrusion detection systems (IDS). Using the IEEE DataPort AAV Attack Dataset, this study aims to develop a robust distributed ML security solution for AAV swarms, significantly advancing the cybersecurity landscape for CPSs.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"335-345"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10924249","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924249/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As cyber-physical systems (CPSs) increasingly integrate physical and digital realms, securing critical infrastructure, such as the Port of Virginia, becomes paramount. Among CPSs, Autonomous Aerial Vehicles (AAVs) are vital for monitoring, communication, and supporting the command and control through remote reconnaissance and surveillance missions. These AAV applications often require coordination, planning, and runtime reconfiguration, traditionally managed by human decision-makers. However, this approach has limitations, as extensively documented in the literature. Artificial Intelligence (AI) has emerged as a pivotal tool to address these limitations, enhancing risk mitigation and informed decision-making. This research proposes a machine learning (ML) based security mechanism, leveraging federated learning and FedAvg for weight averaging, combined with SHAP analysis to identify key contributing features. This AI-based system requires less human intervention and is more effective in detecting novel attacks than traditional intrusion detection systems (IDS). Using the IEEE DataPort AAV Attack Dataset, this study aims to develop a robust distributed ML security solution for AAV swarms, significantly advancing the cybersecurity landscape for CPSs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信