Pietro Rando Mazzarino;Martina Capone;Elisa Guelpa;Lorenzo Bottaccioli;Vittorio Verda;Edoardo Patti
{"title":"A Modular Co-Simulation Platform for Comparing Flexibility Solutions in District Heating Under Variable Operating Conditions","authors":"Pietro Rando Mazzarino;Martina Capone;Elisa Guelpa;Lorenzo Bottaccioli;Vittorio Verda;Edoardo Patti","doi":"10.1109/TSUSC.2024.3449977","DOIUrl":null,"url":null,"abstract":"Integrated modeling and simulation are crucial for optimizing cities’ energy planning. Existing sector-specific analyses have implementation limitations in representing interactions across infrastructures, limiting optimization potentials. An integrated framework simulating multiple interacting components from a systemic perspective could reveal efficiency gains, flexibility, and synergies across urban energy networks to guide sustainable energy transitions. Co-simulation approaches are gaining attention for analyzing complex interconnected systems like District Heating (DH). Traditional single-discipline models present limitations in fully representing the interconnectivity between district heating networks and related subsystems, such as those in buildings and energy generation. Therefore, we propose a co-simulation based framework to simulate DH system behavior while easily integrating models of other subsystems and Functional Mock-up Unit (FMU) simulators. We tested this Plug&Play modular framework for Demand Side Management (DSM) and Storage-based strategies, evaluating their effectiveness in peak reduction while lowering the temperatures of the network.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 2","pages":"408-417"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648783","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10648783/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated modeling and simulation are crucial for optimizing cities’ energy planning. Existing sector-specific analyses have implementation limitations in representing interactions across infrastructures, limiting optimization potentials. An integrated framework simulating multiple interacting components from a systemic perspective could reveal efficiency gains, flexibility, and synergies across urban energy networks to guide sustainable energy transitions. Co-simulation approaches are gaining attention for analyzing complex interconnected systems like District Heating (DH). Traditional single-discipline models present limitations in fully representing the interconnectivity between district heating networks and related subsystems, such as those in buildings and energy generation. Therefore, we propose a co-simulation based framework to simulate DH system behavior while easily integrating models of other subsystems and Functional Mock-up Unit (FMU) simulators. We tested this Plug&Play modular framework for Demand Side Management (DSM) and Storage-based strategies, evaluating their effectiveness in peak reduction while lowering the temperatures of the network.