Do as I Can, Not as I Get: Topology-Aware Multi-Hop Reasoning on Multi-Modal Knowledge Graphs

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shangfei Zheng;Hongzhi Yin;Tong Chen;Quoc Viet Hung Nguyen;Wei Chen;Lei Zhao
{"title":"Do as I Can, Not as I Get: Topology-Aware Multi-Hop Reasoning on Multi-Modal Knowledge Graphs","authors":"Shangfei Zheng;Hongzhi Yin;Tong Chen;Quoc Viet Hung Nguyen;Wei Chen;Lei Zhao","doi":"10.1109/TKDE.2025.3546686","DOIUrl":null,"url":null,"abstract":"A multi-modal knowledge graph (MKG) includes triplets that consist of entities and relations and multi-modal auxiliary data. In recent years, multi-hop multi-modal knowledge graph reasoning (MMKGR) based on reinforcement learning (RL) has received extensive attention because it addresses the intrinsic incompleteness of MKG in an interpretable manner. However, its performance is limited by empirically designed rewards and sparse relations. In addition, this method has been designed for the transductive setting where test entities have been seen during training, and it works poorly in the inductive setting where test entities do not appear in the training set. To overcome these issues, we propose <bold>TMR</b> (<bold>T</b>opology-aware <bold>M</b>ulti-hop <bold>R</b>easoning), which can conduct MKG reasoning under inductive and transductive settings. Specifically, TMR mainly consists of two components. (1) The topology-aware inductive representation captures information from the directed relations of unseen entities, and aggregates query-related topology features in an attentive manner to generate the fine-grained entity-independent features. (2) After completing multi-modal feature fusion, the relation-augmented adaptive RL conducts multi-hop reasoning by eliminating manual rewards and dynamically adding actions. Finally, we construct new MKG datasets with different scales for inductive reasoning evaluation. Experimental results demonstrate that TMP outperforms state-of-the-art MKGR methods under both inductive and transductive settings.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2405-2419"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908095/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-modal knowledge graph (MKG) includes triplets that consist of entities and relations and multi-modal auxiliary data. In recent years, multi-hop multi-modal knowledge graph reasoning (MMKGR) based on reinforcement learning (RL) has received extensive attention because it addresses the intrinsic incompleteness of MKG in an interpretable manner. However, its performance is limited by empirically designed rewards and sparse relations. In addition, this method has been designed for the transductive setting where test entities have been seen during training, and it works poorly in the inductive setting where test entities do not appear in the training set. To overcome these issues, we propose TMR (Topology-aware Multi-hop Reasoning), which can conduct MKG reasoning under inductive and transductive settings. Specifically, TMR mainly consists of two components. (1) The topology-aware inductive representation captures information from the directed relations of unseen entities, and aggregates query-related topology features in an attentive manner to generate the fine-grained entity-independent features. (2) After completing multi-modal feature fusion, the relation-augmented adaptive RL conducts multi-hop reasoning by eliminating manual rewards and dynamically adding actions. Finally, we construct new MKG datasets with different scales for inductive reasoning evaluation. Experimental results demonstrate that TMP outperforms state-of-the-art MKGR methods under both inductive and transductive settings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信