A Novel Expandable Borderline Smote Over-Sampling Method for Class Imbalance Problem

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hao Sun;Jianping Li;Xiaoqian Zhu
{"title":"A Novel Expandable Borderline Smote Over-Sampling Method for Class Imbalance Problem","authors":"Hao Sun;Jianping Li;Xiaoqian Zhu","doi":"10.1109/TKDE.2025.3544284","DOIUrl":null,"url":null,"abstract":"The class imbalance problem can cause classifiers to be biased toward the majority class and inclined to generate incorrect predictions. While existing studies have proposed numerous oversampling methods to alleviate class imbalance by generating extra minority class samples, these methods still have some inherent weaknesses and make the generated samples less informative. This study proposes a novel over-sampling method named the Expandable Borderline Smote (EB-Smote), which can address the weaknesses of existing over-sampling methods and generate more informative synthetic samples. In EB-Smote, not only minority class but also majority class is oversampled, and the synthetic samples are generated in the area between the selected minority and majority samples, which are close to the borderlines of their respective classes. EB-Smote can generate more informative samples by expanding the borderlines of minority and majority classes toward the actual decision boundary. Based on 27 imbalanced datasets and commonly used machine learning models, the experimental results demonstrate that EB-Smote significantly outperforms the other 8 existing oversampling methods. This study can provide theoretical guidance and practical recommendations to solve the crucial class imbalance problem in classification tasks.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2183-2199"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902063/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The class imbalance problem can cause classifiers to be biased toward the majority class and inclined to generate incorrect predictions. While existing studies have proposed numerous oversampling methods to alleviate class imbalance by generating extra minority class samples, these methods still have some inherent weaknesses and make the generated samples less informative. This study proposes a novel over-sampling method named the Expandable Borderline Smote (EB-Smote), which can address the weaknesses of existing over-sampling methods and generate more informative synthetic samples. In EB-Smote, not only minority class but also majority class is oversampled, and the synthetic samples are generated in the area between the selected minority and majority samples, which are close to the borderlines of their respective classes. EB-Smote can generate more informative samples by expanding the borderlines of minority and majority classes toward the actual decision boundary. Based on 27 imbalanced datasets and commonly used machine learning models, the experimental results demonstrate that EB-Smote significantly outperforms the other 8 existing oversampling methods. This study can provide theoretical guidance and practical recommendations to solve the crucial class imbalance problem in classification tasks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信