Shanshan Wang;Fangzheng Yuan;Keyang Wang;Xun Yang;Xingyi Zhang;Meng Wang
{"title":"Dual-State Personalized Knowledge Tracing With Emotional Incorporation","authors":"Shanshan Wang;Fangzheng Yuan;Keyang Wang;Xun Yang;Xingyi Zhang;Meng Wang","doi":"10.1109/TKDE.2025.3538121","DOIUrl":null,"url":null,"abstract":"Knowledge tracing has been widely used in online learning systems to guide the students’ future learning. However, most existing KT models primarily focus on extracting abundant information from the question sets and explore the relationships between them, but ignore the personalized student behavioral information in the learning process. This will limit the model’s ability to accurately capture the personalized knowledge states of students and reasonably predict their performances. To alleviate this limitation, we explicitly models the personalized learning process by incorporating the emotions, a representative personalized behavior in the learning process, into KT framework. Specifically, we present a novel Dual-State Personalized Knowledge Tracing with Emotional Incorporation model to achieve this goal: First, we incorporate emotional information into the modeling process of knowledge state, resulting in the Knowledge State Boosting Module. Second, we design an Emotional State Tracing Module to monitor students’ personalized emotional states, and propose an emotion prediction method based on personalized emotional states. Finally, we apply the predicted emotions to enhance students’ response prediction. Furthermore, to extend the generalization capability of our model across different datasets, we design a transferred version of DEKT, named Transfer Learning-based Self-loop model (T-DEKT). Extensive experiments show our method achieves the state-of-the-art performance.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 5","pages":"2440-2455"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10887001/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge tracing has been widely used in online learning systems to guide the students’ future learning. However, most existing KT models primarily focus on extracting abundant information from the question sets and explore the relationships between them, but ignore the personalized student behavioral information in the learning process. This will limit the model’s ability to accurately capture the personalized knowledge states of students and reasonably predict their performances. To alleviate this limitation, we explicitly models the personalized learning process by incorporating the emotions, a representative personalized behavior in the learning process, into KT framework. Specifically, we present a novel Dual-State Personalized Knowledge Tracing with Emotional Incorporation model to achieve this goal: First, we incorporate emotional information into the modeling process of knowledge state, resulting in the Knowledge State Boosting Module. Second, we design an Emotional State Tracing Module to monitor students’ personalized emotional states, and propose an emotion prediction method based on personalized emotional states. Finally, we apply the predicted emotions to enhance students’ response prediction. Furthermore, to extend the generalization capability of our model across different datasets, we design a transferred version of DEKT, named Transfer Learning-based Self-loop model (T-DEKT). Extensive experiments show our method achieves the state-of-the-art performance.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.