Martina Iannella , Alberto Marcone , Luca Motto Ros , Vadim Weinstein
{"title":"Piecewise convex embeddability on linear orders","authors":"Martina Iannella , Alberto Marcone , Luca Motto Ros , Vadim Weinstein","doi":"10.1016/j.apal.2025.103581","DOIUrl":null,"url":null,"abstract":"<div><div>Given a nonempty set <span><math><mi>L</mi></math></span> of linear orders, we say that the linear order <em>L</em> is <span><math><mi>L</mi></math></span>-convex embeddable into the linear order <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> if it is possible to partition <em>L</em> into convex sets indexed by some element of <span><math><mi>L</mi></math></span> which are isomorphic to convex subsets of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> ordered in the same way. This notion generalizes convex embeddability and (finite) piecewise convex embeddability (both studied in <span><span>[13]</span></span>), which are the special cases <span><math><mi>L</mi><mo>=</mo><mo>{</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><mi>L</mi><mo>=</mo><mrow><mi>Fin</mi></mrow></math></span>. We focus mainly on the behavior of these relations on the set of countable linear orders, first characterizing when they are transitive, and hence a quasi-order. We then study these quasi-orders from a combinatorial point of view, and analyze their complexity with respect to Borel reducibility. Finally, we extend our analysis to uncountable linear orders.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103581"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000302","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
Given a nonempty set of linear orders, we say that the linear order L is -convex embeddable into the linear order if it is possible to partition L into convex sets indexed by some element of which are isomorphic to convex subsets of ordered in the same way. This notion generalizes convex embeddability and (finite) piecewise convex embeddability (both studied in [13]), which are the special cases and . We focus mainly on the behavior of these relations on the set of countable linear orders, first characterizing when they are transitive, and hence a quasi-order. We then study these quasi-orders from a combinatorial point of view, and analyze their complexity with respect to Borel reducibility. Finally, we extend our analysis to uncountable linear orders.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.