Qingtian Luo , Jian Jiang , Qing Zhu , Sashuang Wang , Yifei Wu , Nan Li , Xiyuan Ba , Fengling Wu , Xu Liu , Yuhui Luo , Donglin Xiong , Lizu Xiao , Xiang Liao , Zhenhe Huang , Zixian Chen , Changyu Jiang
{"title":"TLR9 in satellite glial cells promotes paclitaxel-induced neuropathic pain by reducing Kir4.1 transcription through histone methylation activation","authors":"Qingtian Luo , Jian Jiang , Qing Zhu , Sashuang Wang , Yifei Wu , Nan Li , Xiyuan Ba , Fengling Wu , Xu Liu , Yuhui Luo , Donglin Xiong , Lizu Xiao , Xiang Liao , Zhenhe Huang , Zixian Chen , Changyu Jiang","doi":"10.1016/j.bbi.2025.03.037","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy-induced neuropathic pain (CINP), commonly induced by paclitaxel (PTX), is a debilitating side effect that often leads to the discontinuation of cancer treatment. Despite its significant impact on patients’ quality of life, the mechanisms underlying CINP remain poorly understood. Recent studies have suggested that immune system activation, particularly through Toll-like receptor 9 (TLR9), plays a crucial role in the development of neuropathic pain. In this study, we investigated the involvement of TLR9 in PTX-induced CINP, with a focus on satellite glial cells (SGCs) in the dorsal root ganglion (DRG). We found that TLR9 expression was significantly upregulated in SGCs following PTX treatment, and its activation contributed to the downregulation of Kir4.1 (potassium inwardly rectifying channel, subfamily J, member 10), a key potassium channel that regulates neuronal excitability. This process was mediated through histone methylation, involving the methyltransferase G9a and the NF-κB signaling pathway. Inhibition of TLR9 or knockdown of its expression alleviated PTX-induced pain behaviors while inhibiting G9a restored Kir4.1 function and reduced pain. These findings suggest that TLR9 and its downstream signaling pathways, including G9a-mediated histone modification, play a critical role in the development of CINP. Targeting TLR9 and histone methylation may provide novel therapeutic strategies for managing CINP and improving cancer treatment outcomes.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"128 ","pages":"Pages 65-82"},"PeriodicalIF":8.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125001229","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapy-induced neuropathic pain (CINP), commonly induced by paclitaxel (PTX), is a debilitating side effect that often leads to the discontinuation of cancer treatment. Despite its significant impact on patients’ quality of life, the mechanisms underlying CINP remain poorly understood. Recent studies have suggested that immune system activation, particularly through Toll-like receptor 9 (TLR9), plays a crucial role in the development of neuropathic pain. In this study, we investigated the involvement of TLR9 in PTX-induced CINP, with a focus on satellite glial cells (SGCs) in the dorsal root ganglion (DRG). We found that TLR9 expression was significantly upregulated in SGCs following PTX treatment, and its activation contributed to the downregulation of Kir4.1 (potassium inwardly rectifying channel, subfamily J, member 10), a key potassium channel that regulates neuronal excitability. This process was mediated through histone methylation, involving the methyltransferase G9a and the NF-κB signaling pathway. Inhibition of TLR9 or knockdown of its expression alleviated PTX-induced pain behaviors while inhibiting G9a restored Kir4.1 function and reduced pain. These findings suggest that TLR9 and its downstream signaling pathways, including G9a-mediated histone modification, play a critical role in the development of CINP. Targeting TLR9 and histone methylation may provide novel therapeutic strategies for managing CINP and improving cancer treatment outcomes.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.