Dipeptidyl peptidase 9 (DPP9) depletion from hepatocytes in experimental primary liver cancer

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
JiaLi Carrie Huang , Xinlin Linda Tong , Michelle Sui Wen Xiang , Badwi B. Boumelhem , Diarmid P. Foulis , MingChang Zhang , Catriona A. McKenzie , Geoffrey W. McCaughan , Thomas Reinheckel , Hui E. Zhang , Mark D. Gorrell
{"title":"Dipeptidyl peptidase 9 (DPP9) depletion from hepatocytes in experimental primary liver cancer","authors":"JiaLi Carrie Huang ,&nbsp;Xinlin Linda Tong ,&nbsp;Michelle Sui Wen Xiang ,&nbsp;Badwi B. Boumelhem ,&nbsp;Diarmid P. Foulis ,&nbsp;MingChang Zhang ,&nbsp;Catriona A. McKenzie ,&nbsp;Geoffrey W. McCaughan ,&nbsp;Thomas Reinheckel ,&nbsp;Hui E. Zhang ,&nbsp;Mark D. Gorrell","doi":"10.1016/j.bbadis.2025.167819","DOIUrl":null,"url":null,"abstract":"<div><div>Dipeptidyl peptidase 9 (DPP9) is an indispensable intracellular protease. Among its many molecular functions is suppression of the NLRP1 inflammasome. Inhibitors targeting all four proteases of the DPP4 family, including DPP9, can reduce tumour burden, including in mouse liver. To explore hepatocyte DPP9 in experimental hepatocellular carcinoma (HCC), we generated hepatocyte-specific DPP9-KO mice by crossing albumin-Cre mice with DPP9 floxed mice and treated sequentially with diethylnitrosamine, then with thioacetamide combined with an atherogenic high-fat diet until 28 weeks of age. DPP9-KO mice had less body, liver and subcutaneous adipose tissue mass, lower fasting plasma glucose and fewer small macroscopic liver nodules compared to DPP9-WT control mice. However, there were no differences in the total number of macroscopic liver nodules, or of microscopic tumour burden, inflammation, fibrosis or steatosis. Consistent with the known function of DPP9 to suppress NLRP1 activation, activated caspase-1 protein and inflammation markers <em>Nfkbib, Cxcl10</em> and <em>Ccl5</em> were elevated in DPP9-KO liver. The tumour suppressor protein p53 was increased and the autophagy proteins beclin1, LC3B and p62 were altered. In conclusion, hepatocyte-specific DPP9 gene deletion in experimental primary liver cancer improved energy metabolism and may reduce liver cancer initiation, <em>via</em> mechanisms that may include increased autophagy and tumour suppression.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 5","pages":"Article 167819"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925001644","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dipeptidyl peptidase 9 (DPP9) is an indispensable intracellular protease. Among its many molecular functions is suppression of the NLRP1 inflammasome. Inhibitors targeting all four proteases of the DPP4 family, including DPP9, can reduce tumour burden, including in mouse liver. To explore hepatocyte DPP9 in experimental hepatocellular carcinoma (HCC), we generated hepatocyte-specific DPP9-KO mice by crossing albumin-Cre mice with DPP9 floxed mice and treated sequentially with diethylnitrosamine, then with thioacetamide combined with an atherogenic high-fat diet until 28 weeks of age. DPP9-KO mice had less body, liver and subcutaneous adipose tissue mass, lower fasting plasma glucose and fewer small macroscopic liver nodules compared to DPP9-WT control mice. However, there were no differences in the total number of macroscopic liver nodules, or of microscopic tumour burden, inflammation, fibrosis or steatosis. Consistent with the known function of DPP9 to suppress NLRP1 activation, activated caspase-1 protein and inflammation markers Nfkbib, Cxcl10 and Ccl5 were elevated in DPP9-KO liver. The tumour suppressor protein p53 was increased and the autophagy proteins beclin1, LC3B and p62 were altered. In conclusion, hepatocyte-specific DPP9 gene deletion in experimental primary liver cancer improved energy metabolism and may reduce liver cancer initiation, via mechanisms that may include increased autophagy and tumour suppression.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信