AI-driven digital circular economy with material and energy sustainability for industry 4.0

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuekuan Zhou
{"title":"AI-driven digital circular economy with material and energy sustainability for industry 4.0","authors":"Yuekuan Zhou","doi":"10.1016/j.egyai.2025.100508","DOIUrl":null,"url":null,"abstract":"<div><div>Circular Economy and Sustainability in Industry 4.0 Era are promoters for carbon neutrality transformation, while their interconnected nexus and specific roles in low-carbon transition have not been clearly revealed. Furthermore, an integrated circular economy framework with buildings, PVs, battery and EVs, with overlaps in renewable-driven operational stages has not been considered in lifecycle decarbonization. This study is to reveal the nexus between Circular Economy and Sustainability in Industry 4.0 Era. Operational modes and mechanism of Circular Economy in PVs, buildings, electric vehicle industries and batteries are specifically analysed, together with energy and carbon flow analysis and optimization. Roles of Circular Economy in Sustainability have been provided, through an integrated circular economy framework with buildings, PVs, battery and electric vehicles (EVs), considering the overlap in renewable-energy driven operational stages in lifecycle decarbonization. Last but not the least, waste material recovery and waste-to-energy conversion have been analysed within the close-in-loop cycle for sustainability transition. Advanced digital technology in future Circular Economy is formulated with data-driven circular economy and internet-of-thing (IoT)-based waste-to-energy framework. Research results indicate that circular economy plays significant roles in sustainability, including cascade reuse paradigm, reverse supply chain with the recovery of end-of-life batteries, EV lifetime extension via repair and reuse, low carbon with refurbishing and remanufacturing, and less new primary materials via recycling materials, waste material recovery and waste-to-energy conversion. The renewable-driven battery-building-transportation-waste circular economy chain with the cross overlap in clean energy utilization can partially offset carbon emissions during the raw materials mining, manufacturing and recycling stages. This study can promote the waste to energy and advanced machine learning techniques with Circular Economy and Sustainability in Industry 4.0 Era.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100508"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Circular Economy and Sustainability in Industry 4.0 Era are promoters for carbon neutrality transformation, while their interconnected nexus and specific roles in low-carbon transition have not been clearly revealed. Furthermore, an integrated circular economy framework with buildings, PVs, battery and EVs, with overlaps in renewable-driven operational stages has not been considered in lifecycle decarbonization. This study is to reveal the nexus between Circular Economy and Sustainability in Industry 4.0 Era. Operational modes and mechanism of Circular Economy in PVs, buildings, electric vehicle industries and batteries are specifically analysed, together with energy and carbon flow analysis and optimization. Roles of Circular Economy in Sustainability have been provided, through an integrated circular economy framework with buildings, PVs, battery and electric vehicles (EVs), considering the overlap in renewable-energy driven operational stages in lifecycle decarbonization. Last but not the least, waste material recovery and waste-to-energy conversion have been analysed within the close-in-loop cycle for sustainability transition. Advanced digital technology in future Circular Economy is formulated with data-driven circular economy and internet-of-thing (IoT)-based waste-to-energy framework. Research results indicate that circular economy plays significant roles in sustainability, including cascade reuse paradigm, reverse supply chain with the recovery of end-of-life batteries, EV lifetime extension via repair and reuse, low carbon with refurbishing and remanufacturing, and less new primary materials via recycling materials, waste material recovery and waste-to-energy conversion. The renewable-driven battery-building-transportation-waste circular economy chain with the cross overlap in clean energy utilization can partially offset carbon emissions during the raw materials mining, manufacturing and recycling stages. This study can promote the waste to energy and advanced machine learning techniques with Circular Economy and Sustainability in Industry 4.0 Era.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信