Single-step precision manufacturing of ZnSe lenses for FLIR thermal imaging: From atomic insights to lab-scale fabrication and integration

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Neha Khatri , Sonam Berwal , Bharpoor Singh , Suman Tewary , K. Manjunath , Saurav Goel
{"title":"Single-step precision manufacturing of ZnSe lenses for FLIR thermal imaging: From atomic insights to lab-scale fabrication and integration","authors":"Neha Khatri ,&nbsp;Sonam Berwal ,&nbsp;Bharpoor Singh ,&nbsp;Suman Tewary ,&nbsp;K. Manjunath ,&nbsp;Saurav Goel","doi":"10.1016/j.jmapro.2025.03.082","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc selenide (ZnSe) is widely used in optical components, including lenses, mirrors and thermal imaging systems, owing to its medium refractive index and broad infrared transmission range (0.6 to 21 μm). However, its soft-brittle nature presents challenges in achieving the nanometric smooth finishes required for precision manufacturing. This study introduces a single-step precision manufacturing process for ZnSe and demonstrates its application in a plano-convex lens integrated into FLIR thermal imaging systems for heat detection in integrated circuits.</div><div>To explore ZnSe's ductile plasticity, we developed a molecular dynamics (MD) model. Generalized Stacking Fault Energy (GSFE) calculations revealed that ZnSe favours slip on the Shuffle set ⟨110⟩ (111), unlike harder, brittle materials like silicon and silicon carbide, which favour the Glide set ⟨11–2⟩ (111) explaining the soft and brittle nature of ZnSe. The model predicted that a Peierls stress of approximately 0.027 GPa initiates the motion of ½ ⟨110⟩ perfect dislocations along the (111) slip planes, leading to plasticity and dislocation dissociation into 1/6 ⟨112⟩ (Shockley) partial dislocations. Analysis of the cutting region revealed phase transformation from zinc-blende to a hexagonal structure and defects, including intrinsic stacking faults and ∑3 coherent twin boundaries. Additionally, simulations indicated that the (100) orientation requires the least stress for plastic deformation, while the (110) orientation requires the most.</div><div>By shedding light on these mechanisms, this research aims to enhance our understanding of the precision machining of ZnSe, guiding the development of optimised cutting strategies to minimise defects and improve manufacturing outcomes. In sum, it introduces a “Design-to-Manufacture” approach, linking atomic-level insights with the practical integration of ZnSe lenses into thermal imaging applications.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"142 ","pages":"Pages 468-481"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525003342","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc selenide (ZnSe) is widely used in optical components, including lenses, mirrors and thermal imaging systems, owing to its medium refractive index and broad infrared transmission range (0.6 to 21 μm). However, its soft-brittle nature presents challenges in achieving the nanometric smooth finishes required for precision manufacturing. This study introduces a single-step precision manufacturing process for ZnSe and demonstrates its application in a plano-convex lens integrated into FLIR thermal imaging systems for heat detection in integrated circuits.
To explore ZnSe's ductile plasticity, we developed a molecular dynamics (MD) model. Generalized Stacking Fault Energy (GSFE) calculations revealed that ZnSe favours slip on the Shuffle set ⟨110⟩ (111), unlike harder, brittle materials like silicon and silicon carbide, which favour the Glide set ⟨11–2⟩ (111) explaining the soft and brittle nature of ZnSe. The model predicted that a Peierls stress of approximately 0.027 GPa initiates the motion of ½ ⟨110⟩ perfect dislocations along the (111) slip planes, leading to plasticity and dislocation dissociation into 1/6 ⟨112⟩ (Shockley) partial dislocations. Analysis of the cutting region revealed phase transformation from zinc-blende to a hexagonal structure and defects, including intrinsic stacking faults and ∑3 coherent twin boundaries. Additionally, simulations indicated that the (100) orientation requires the least stress for plastic deformation, while the (110) orientation requires the most.
By shedding light on these mechanisms, this research aims to enhance our understanding of the precision machining of ZnSe, guiding the development of optimised cutting strategies to minimise defects and improve manufacturing outcomes. In sum, it introduces a “Design-to-Manufacture” approach, linking atomic-level insights with the practical integration of ZnSe lenses into thermal imaging applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信