Corrosion behavior and mechanical properties of SiC/SiC composite joints with Y2O3-Al2O3-SiO2 interlayer under high-temperature steam environments at 1200 °C
IF 2.8 2区 工程技术Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaobo Yang , Chenxi Liang , Jiali Li , Yujie Ma , Sijie Kou , Juanli Deng , Bo Chen , Shangwu Fan
{"title":"Corrosion behavior and mechanical properties of SiC/SiC composite joints with Y2O3-Al2O3-SiO2 interlayer under high-temperature steam environments at 1200 °C","authors":"Shaobo Yang , Chenxi Liang , Jiali Li , Yujie Ma , Sijie Kou , Juanli Deng , Bo Chen , Shangwu Fan","doi":"10.1016/j.jnucmat.2025.155798","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigated the corrosion behavior and mechanical performance of SiC/SiC composite joints with Y<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (YAS) interlayers under high-temperature steam environments at 1200 °C. Under low-flow conditions, partial disruption of Si-O and Al-O bonds in the YAS glass network reduced crosslinking, forming an aluminosilicate protective layer that inhibited further corrosion. Prolonged exposure led to Y<sup>3+</sup> migration and accumulation, resulting in Y<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> precipitation and growth. High-flow conditions caused a thinner glass layer, continuous longitudinal cracks, and more severe erosion and dissolution of the YAS glass due to higher steam velocity. Despite these degradations, the joints exhibited satisfactory performance, maintaining shear strengths of about 40 ± 2 MPa after 15 h of low-flow exposure and about 36 ± 5 MPa after 5 h of high-flow exposure. These findings demonstrate that YAS interlayers provide excellent corrosion resistance and mechanical stability as a sealant for nuclear-grade SiC/SiC.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"610 ","pages":"Article 155798"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152500193X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigated the corrosion behavior and mechanical performance of SiC/SiC composite joints with Y2O3-Al2O3-SiO2 (YAS) interlayers under high-temperature steam environments at 1200 °C. Under low-flow conditions, partial disruption of Si-O and Al-O bonds in the YAS glass network reduced crosslinking, forming an aluminosilicate protective layer that inhibited further corrosion. Prolonged exposure led to Y3+ migration and accumulation, resulting in Y2Si2O7 precipitation and growth. High-flow conditions caused a thinner glass layer, continuous longitudinal cracks, and more severe erosion and dissolution of the YAS glass due to higher steam velocity. Despite these degradations, the joints exhibited satisfactory performance, maintaining shear strengths of about 40 ± 2 MPa after 15 h of low-flow exposure and about 36 ± 5 MPa after 5 h of high-flow exposure. These findings demonstrate that YAS interlayers provide excellent corrosion resistance and mechanical stability as a sealant for nuclear-grade SiC/SiC.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.