{"title":"Nonparametric conditional U-statistics on Lie groups with measurement errors","authors":"Salim Bouzebda, Nourelhouda Taachouche","doi":"10.1016/j.jco.2025.101944","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive framework for conditional <em>U</em>-statistics of a general order in the context of Lie group-valued predictors affected by measurement errors. Such situations arise in a variety of modern statistical problems. Our approach is grounded in an abstract harmonic analysis on Lie groups, a setting relatively underexplored in statistical research. In a unified study, we introduce an innovative deconvolution method for conditional <em>U</em>-statistics and investigate its convergence rate and asymptotic distribution for the first time. Furthermore, we explore the application of conditional <em>U</em>-statistics to variables that combine, in a nontrivial way, Euclidean and non-Euclidean elements subject to measurement errors, an area largely uncharted in statistical research. We derive general asymptotic properties, including convergence rates across various modes and the asymptotic distribution. All results are established under fairly general conditions on the underlying models. Additionally, our results are used to derive the asymptotic confidence intervals derived from the asymptotic distribution of the estimator. We also discuss applications of the general approximation results and give new insights into the Kendall rank correlation coefficient and discrimination problems.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"89 ","pages":"Article 101944"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000226","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a comprehensive framework for conditional U-statistics of a general order in the context of Lie group-valued predictors affected by measurement errors. Such situations arise in a variety of modern statistical problems. Our approach is grounded in an abstract harmonic analysis on Lie groups, a setting relatively underexplored in statistical research. In a unified study, we introduce an innovative deconvolution method for conditional U-statistics and investigate its convergence rate and asymptotic distribution for the first time. Furthermore, we explore the application of conditional U-statistics to variables that combine, in a nontrivial way, Euclidean and non-Euclidean elements subject to measurement errors, an area largely uncharted in statistical research. We derive general asymptotic properties, including convergence rates across various modes and the asymptotic distribution. All results are established under fairly general conditions on the underlying models. Additionally, our results are used to derive the asymptotic confidence intervals derived from the asymptotic distribution of the estimator. We also discuss applications of the general approximation results and give new insights into the Kendall rank correlation coefficient and discrimination problems.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.