Impact of dislocation densities on the microscale strength of single-crystal strontium titanate

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiawen Zhang , Xufei Fang , Wenjun Lu
{"title":"Impact of dislocation densities on the microscale strength of single-crystal strontium titanate","authors":"Jiawen Zhang ,&nbsp;Xufei Fang ,&nbsp;Wenjun Lu","doi":"10.1016/j.actamat.2025.121004","DOIUrl":null,"url":null,"abstract":"<div><div>Dislocations in ceramics at room temperature are attracting increasing research interest. Dislocations may bring a new perspective for tuning physical and mechanical properties in advanced ceramics. Here, we investigate the dislocation density dependent micromechanical properties of single-crystal SrTiO<sub>3</sub> by tuning the dislocation densities (from ∼10<sup>10</sup> m<sup>-2</sup> up to ∼10<sup>14</sup> m<sup>-2</sup>). Using micropillar compression tests, we find the samples exhibit a transition from brittle fracture (if no dislocation is present in the pillars) to plastic yield (with pre-engineered dislocations in the pillars). Within the regime of plastic deformation, the yield strength and plastic flow behavior exhibit a strong dependence on the dislocation density. The yield strength first decreases and then increases with the increase of dislocation densities. Detailed examination via post-mortem transmission electron microscopy reveals a complex evolution of the dislocation structure, highlighting the critical role played by dislocations in regulating the brittle/ductile behavior in SrTiO<sub>3</sub> at room temperature. Our findings shed new light on dislocation-mediated mechanical properties in ceramics and may provide designing guidelines for the prospective dislocation-based devices.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"291 ","pages":"Article 121004"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002952","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dislocations in ceramics at room temperature are attracting increasing research interest. Dislocations may bring a new perspective for tuning physical and mechanical properties in advanced ceramics. Here, we investigate the dislocation density dependent micromechanical properties of single-crystal SrTiO3 by tuning the dislocation densities (from ∼1010 m-2 up to ∼1014 m-2). Using micropillar compression tests, we find the samples exhibit a transition from brittle fracture (if no dislocation is present in the pillars) to plastic yield (with pre-engineered dislocations in the pillars). Within the regime of plastic deformation, the yield strength and plastic flow behavior exhibit a strong dependence on the dislocation density. The yield strength first decreases and then increases with the increase of dislocation densities. Detailed examination via post-mortem transmission electron microscopy reveals a complex evolution of the dislocation structure, highlighting the critical role played by dislocations in regulating the brittle/ductile behavior in SrTiO3 at room temperature. Our findings shed new light on dislocation-mediated mechanical properties in ceramics and may provide designing guidelines for the prospective dislocation-based devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信