On the integration of Manin pairs

IF 0.6 4区 数学 Q3 MATHEMATICS
David Li-Bland, Eckhard Meinrenken
{"title":"On the integration of Manin pairs","authors":"David Li-Bland,&nbsp;Eckhard Meinrenken","doi":"10.1016/j.difgeo.2025.102246","DOIUrl":null,"url":null,"abstract":"<div><div>It is a remarkable fact that the integrability of a Poisson manifold to a symplectic groupoid depends only on the integrability of its cotangent Lie algebroid <em>A</em>: The source-simply connected Lie groupoid <span><math><mi>G</mi><mo>⇉</mo><mi>M</mi></math></span> integrating <em>A</em> automatically acquires a multiplicative symplectic 2-form. More generally, a similar result holds for the integration of Lie bialgebroids to Poisson groupoids, as well as in the ‘quasi’ settings of Dirac structures and quasi-Lie bialgebroids. In this article, we will place these results into a general context of Manin pairs <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>A</mi><mo>)</mo></math></span>, thereby obtaining a simple geometric approach to these integration results. We also clarify the case where the groupoid <em>G</em> integrating <em>A</em> is not source-simply connected. Furthermore, we obtain a description of Hamiltonian spaces for Poisson groupoids and quasi-symplectic groupoids within this formalism.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102246"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092622452500021X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is a remarkable fact that the integrability of a Poisson manifold to a symplectic groupoid depends only on the integrability of its cotangent Lie algebroid A: The source-simply connected Lie groupoid GM integrating A automatically acquires a multiplicative symplectic 2-form. More generally, a similar result holds for the integration of Lie bialgebroids to Poisson groupoids, as well as in the ‘quasi’ settings of Dirac structures and quasi-Lie bialgebroids. In this article, we will place these results into a general context of Manin pairs (E,A), thereby obtaining a simple geometric approach to these integration results. We also clarify the case where the groupoid G integrating A is not source-simply connected. Furthermore, we obtain a description of Hamiltonian spaces for Poisson groupoids and quasi-symplectic groupoids within this formalism.
关于Manin对的积分
泊松流形对辛群似体的可积性仅取决于其余切李代数似体a的可积性,这是一个值得注意的事实:对a积分的源单连通李群似体G M自动获得了一个乘法辛2型。更一般地说,对于李双代数群与泊松群的积分,以及在狄拉克结构和拟李双代数群的“拟”设置中,也有类似的结果。在本文中,我们将把这些结果放在Manin对(E, a)的一般上下文中,从而获得这些积分结果的简单几何方法。我们还澄清了对A积分的群形G不是源单连通的情况。在此基础上,得到了泊松群和拟辛群的哈密顿空间的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信