{"title":"On the integration of Manin pairs","authors":"David Li-Bland, Eckhard Meinrenken","doi":"10.1016/j.difgeo.2025.102246","DOIUrl":null,"url":null,"abstract":"<div><div>It is a remarkable fact that the integrability of a Poisson manifold to a symplectic groupoid depends only on the integrability of its cotangent Lie algebroid <em>A</em>: The source-simply connected Lie groupoid <span><math><mi>G</mi><mo>⇉</mo><mi>M</mi></math></span> integrating <em>A</em> automatically acquires a multiplicative symplectic 2-form. More generally, a similar result holds for the integration of Lie bialgebroids to Poisson groupoids, as well as in the ‘quasi’ settings of Dirac structures and quasi-Lie bialgebroids. In this article, we will place these results into a general context of Manin pairs <span><math><mo>(</mo><mi>E</mi><mo>,</mo><mi>A</mi><mo>)</mo></math></span>, thereby obtaining a simple geometric approach to these integration results. We also clarify the case where the groupoid <em>G</em> integrating <em>A</em> is not source-simply connected. Furthermore, we obtain a description of Hamiltonian spaces for Poisson groupoids and quasi-symplectic groupoids within this formalism.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"99 ","pages":"Article 102246"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092622452500021X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is a remarkable fact that the integrability of a Poisson manifold to a symplectic groupoid depends only on the integrability of its cotangent Lie algebroid A: The source-simply connected Lie groupoid integrating A automatically acquires a multiplicative symplectic 2-form. More generally, a similar result holds for the integration of Lie bialgebroids to Poisson groupoids, as well as in the ‘quasi’ settings of Dirac structures and quasi-Lie bialgebroids. In this article, we will place these results into a general context of Manin pairs , thereby obtaining a simple geometric approach to these integration results. We also clarify the case where the groupoid G integrating A is not source-simply connected. Furthermore, we obtain a description of Hamiltonian spaces for Poisson groupoids and quasi-symplectic groupoids within this formalism.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.