Carbon and water footprints of the revalorisation of glucosinolates from broccoli by-products: Case study from Spain

IF 3.5 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Josemi G. Penalver , Maite M. Aldaya , Ane Maite Muez , Andrea Martín-Guindal , Maria J. Beriain
{"title":"Carbon and water footprints of the revalorisation of glucosinolates from broccoli by-products: Case study from Spain","authors":"Josemi G. Penalver ,&nbsp;Maite M. Aldaya ,&nbsp;Ane Maite Muez ,&nbsp;Andrea Martín-Guindal ,&nbsp;Maria J. Beriain","doi":"10.1016/j.fbp.2025.03.014","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing the costs, benefits, and externalities of circular economy measures from a life cycle perspective is increasingly important for developing sustainable agro-food strategies. This study evaluates the carbon and water implications of revalorising glucosinolates from broccoli by-products through two distinct life-cycle scenarios in a case study conducted in Navarra, Spain. In the first scenario, glucosinolates are obtained from conventional broccoli production, where they are naturally present in the edible inflorescences. The second scenario introduces an innovative step: extracting glucosinolates from otherwise discarded broccoli by-products, such as stalks and inflorescence detachments. Carbon and water footprints were analysed for both scenarios based on the production of 1000 grams of glucosinolates. The results reveal that while the second scenario enhances resource efficiency by utilizing agricultural waste, the environmental costs of the extraction process outweigh the benefits, leading to a 37.6 % increase in greenhouse gas emissions and a 4.6 % rise in water usage compared to the first scenario. To address this, an improvement scenario is proposed, featuring a more efficient use of solvents during extraction, which significantly reduces both emissions and water use. This study underscores that circular economy strategies in agro-food systems do not always translate into environmental benefits accross all resources. A detailed analysis of various carbon and water indicators has provided valuable insights to enhance the environmental performance of such strategies, reinforcing the importance of life-cycle assessments in shaping more effective agro-food policies.</div></div>","PeriodicalId":12134,"journal":{"name":"Food and Bioproducts Processing","volume":"151 ","pages":"Pages 211-221"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioproducts Processing","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960308525000604","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing the costs, benefits, and externalities of circular economy measures from a life cycle perspective is increasingly important for developing sustainable agro-food strategies. This study evaluates the carbon and water implications of revalorising glucosinolates from broccoli by-products through two distinct life-cycle scenarios in a case study conducted in Navarra, Spain. In the first scenario, glucosinolates are obtained from conventional broccoli production, where they are naturally present in the edible inflorescences. The second scenario introduces an innovative step: extracting glucosinolates from otherwise discarded broccoli by-products, such as stalks and inflorescence detachments. Carbon and water footprints were analysed for both scenarios based on the production of 1000 grams of glucosinolates. The results reveal that while the second scenario enhances resource efficiency by utilizing agricultural waste, the environmental costs of the extraction process outweigh the benefits, leading to a 37.6 % increase in greenhouse gas emissions and a 4.6 % rise in water usage compared to the first scenario. To address this, an improvement scenario is proposed, featuring a more efficient use of solvents during extraction, which significantly reduces both emissions and water use. This study underscores that circular economy strategies in agro-food systems do not always translate into environmental benefits accross all resources. A detailed analysis of various carbon and water indicators has provided valuable insights to enhance the environmental performance of such strategies, reinforcing the importance of life-cycle assessments in shaping more effective agro-food policies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food and Bioproducts Processing
Food and Bioproducts Processing 工程技术-工程:化工
CiteScore
9.70
自引率
4.30%
发文量
115
审稿时长
24 days
期刊介绍: Official Journal of the European Federation of Chemical Engineering: Part C FBP aims to be the principal international journal for publication of high quality, original papers in the branches of engineering and science dedicated to the safe processing of biological products. It is the only journal to exploit the synergy between biotechnology, bioprocessing and food engineering. Papers showing how research results can be used in engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in equipment or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of food and bioproducts processing. The journal has a strong emphasis on the interface between engineering and food or bioproducts. Papers that are not likely to be published are those: • Primarily concerned with food formulation • That use experimental design techniques to obtain response surfaces but gain little insight from them • That are empirical and ignore established mechanistic models, e.g., empirical drying curves • That are primarily concerned about sensory evaluation and colour • Concern the extraction, encapsulation and/or antioxidant activity of a specific biological material without providing insight that could be applied to a similar but different material, • Containing only chemical analyses of biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信