Multi-Layer Cross-Modal Prompt Fusion for No-Reference Image Quality Assessment

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yang Lu , Zilu Zhou , Zifan Yang , Shuangyao Han , Xiaoheng Jiang , Mingliang Xu
{"title":"Multi-Layer Cross-Modal Prompt Fusion for No-Reference Image Quality Assessment","authors":"Yang Lu ,&nbsp;Zilu Zhou ,&nbsp;Zifan Yang ,&nbsp;Shuangyao Han ,&nbsp;Xiaoheng Jiang ,&nbsp;Mingliang Xu","doi":"10.1016/j.displa.2025.103045","DOIUrl":null,"url":null,"abstract":"<div><div>No-Reference Image Quality Assessment (NR-IQA) predicts image quality without reference images and exhibits high consistency with human visual perception. Multi-modal approaches based on vision-language (VL) models, like CLIP, have demonstrated remarkable generalization capabilities in NR-IQA tasks. While prompt learning has improved CLIP’s adaptation to downstream tasks, existing methods often lack synergy between textual and visual prompts, limiting their ability to capture complex cross-modal semantics. In response to this limitation, this paper proposes an innovative framework named MCPF-IQA with multi-layer cross-modal prompt fusion to further enhance the performance of CLIP model on NR-IQA tasks. Specifically, we introduce multi-layer prompt learning in both the text and visual branches of CLIP to improve the model’s comprehension of visual features and image quality. Additionally, we design a novel cross-modal prompt fusion module that deeply integrates text and visual prompts to enhance the accuracy of image quality assessment. We also develop five auxiliary quality-related category labels to describe image quality more precisely. Experimental results demonstrate MCPF-IQA model delivers exceptional performance on natural image datasets, with SRCC of 0.988 on the LIVE dataset (1.8% higher than the second-best method) and 0.913 on the LIVEC dataset (1.0% superior to the second-best method). Furthermore, it also exhibits strong performance on AI-generated image datasets. Ablation study results demonstrate the effectiveness and advantages of our method.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 103045"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000824","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

No-Reference Image Quality Assessment (NR-IQA) predicts image quality without reference images and exhibits high consistency with human visual perception. Multi-modal approaches based on vision-language (VL) models, like CLIP, have demonstrated remarkable generalization capabilities in NR-IQA tasks. While prompt learning has improved CLIP’s adaptation to downstream tasks, existing methods often lack synergy between textual and visual prompts, limiting their ability to capture complex cross-modal semantics. In response to this limitation, this paper proposes an innovative framework named MCPF-IQA with multi-layer cross-modal prompt fusion to further enhance the performance of CLIP model on NR-IQA tasks. Specifically, we introduce multi-layer prompt learning in both the text and visual branches of CLIP to improve the model’s comprehension of visual features and image quality. Additionally, we design a novel cross-modal prompt fusion module that deeply integrates text and visual prompts to enhance the accuracy of image quality assessment. We also develop five auxiliary quality-related category labels to describe image quality more precisely. Experimental results demonstrate MCPF-IQA model delivers exceptional performance on natural image datasets, with SRCC of 0.988 on the LIVE dataset (1.8% higher than the second-best method) and 0.913 on the LIVEC dataset (1.0% superior to the second-best method). Furthermore, it also exhibits strong performance on AI-generated image datasets. Ablation study results demonstrate the effectiveness and advantages of our method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信