{"title":"MWPRFN: Multilevel Wavelet Pyramid Recurrent Fusion Network for underwater image enhancement","authors":"Jinzhang Li, Jue Wang, Bo Li, Hangfan Gu","doi":"10.1016/j.displa.2025.103050","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater images often suffer from color distortion, blurry details, and low contrast due to light scattering and water-type changes. Existing methods mainly focus on spatial information and ignore frequency-difference processing, which hinders the solution to the mixing degradation problem. To overcome these challenges, we propose a multi-scale wavelet pyramid recurrent fusion network (MWPRFN). This network retains low-frequency features at all levels, integrates them into a low-frequency enhancement branch, and fuses image features using a multi-scale dynamic cross-layer mechanism (DCLM) to capture the correlation between high and low frequencies. Each stage of the multi-level framework consists of a multi-frequency information interaction pyramid network (MFIPN) and an atmospheric light compensation estimation network (ALCEN). The low-frequency branch of the MFIPN enhances global details through an efficient context refinement module (ECRM). In contrast, the high-frequency branch extracts texture and edge features through a multi-scale difference expansion module (MSDC). After the inverse wavelet transform, ALCEN uses atmospheric light estimation and frequency domain compensation to compensate for color distortion. Experimental results show that MWPRFN significantly improves the quality of underwater images on five benchmark datasets. Compared with state-of-the-art methods, objective image quality metrics including PSNR, SSIM, and NIQE are improved by an average of 3.45%, 1.32%, and 4.50% respectively. Specifically, PSNR increased from 24.03 decibels to 24.86 decibels, SSIM increased from 0.9002 to 0.9121, and NIQE decreased from 3.261 to 3.115.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 103050"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000873","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater images often suffer from color distortion, blurry details, and low contrast due to light scattering and water-type changes. Existing methods mainly focus on spatial information and ignore frequency-difference processing, which hinders the solution to the mixing degradation problem. To overcome these challenges, we propose a multi-scale wavelet pyramid recurrent fusion network (MWPRFN). This network retains low-frequency features at all levels, integrates them into a low-frequency enhancement branch, and fuses image features using a multi-scale dynamic cross-layer mechanism (DCLM) to capture the correlation between high and low frequencies. Each stage of the multi-level framework consists of a multi-frequency information interaction pyramid network (MFIPN) and an atmospheric light compensation estimation network (ALCEN). The low-frequency branch of the MFIPN enhances global details through an efficient context refinement module (ECRM). In contrast, the high-frequency branch extracts texture and edge features through a multi-scale difference expansion module (MSDC). After the inverse wavelet transform, ALCEN uses atmospheric light estimation and frequency domain compensation to compensate for color distortion. Experimental results show that MWPRFN significantly improves the quality of underwater images on five benchmark datasets. Compared with state-of-the-art methods, objective image quality metrics including PSNR, SSIM, and NIQE are improved by an average of 3.45%, 1.32%, and 4.50% respectively. Specifically, PSNR increased from 24.03 decibels to 24.86 decibels, SSIM increased from 0.9002 to 0.9121, and NIQE decreased from 3.261 to 3.115.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.