Misleading Supervision Removal Mechanism for self-supervised monocular depth estimation

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xinzhou Fan, Jinze Xu, Feng Ye, Yizong Lai
{"title":"Misleading Supervision Removal Mechanism for self-supervised monocular depth estimation","authors":"Xinzhou Fan,&nbsp;Jinze Xu,&nbsp;Feng Ye,&nbsp;Yizong Lai","doi":"10.1016/j.displa.2025.103043","DOIUrl":null,"url":null,"abstract":"<div><div>Self-supervised monocular depth estimation leverages the photometric consistency assumption and exploits geometric relations between image frames to convert depth errors into reprojection photometric errors. This allows the model train effectively without explicit depth labels. However, due to factors such as the incomplete validity of the photometric consistency assumption, inaccurate geometric relationships between image frames, and sensor noise, there are limitations to photometric error loss, which can easily introduce inaccurate supervision information and mislead the model into local optimal solutions. To address this issue, this paper introduces a Misleading Supervision Removal Mechanism(MSRM), aimed at enhancing the accuracy of supervisory information by eliminating misleading cues. MSRM employs a composite masking strategy that incorporates both pixel-level and image-level masks, where pixel-level masks include sky masks, edge masks, and edge consistency techniques. MSRM largely eliminate misleading supervision information introduced by sky regions, edge regions, and images with low viewpoint changes. Without altering network architecture, MSRM ensures no increase in inference time, making it a plug-and-play solution. Implemented across various self-supervised monocular depth estimation algorithms, experiments on KITTI, Cityscapes, and Make3D datasets demonstrate that MSRM significantly improves the prediction accuracy and generalization performance of the original algorithms.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 103043"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000800","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Self-supervised monocular depth estimation leverages the photometric consistency assumption and exploits geometric relations between image frames to convert depth errors into reprojection photometric errors. This allows the model train effectively without explicit depth labels. However, due to factors such as the incomplete validity of the photometric consistency assumption, inaccurate geometric relationships between image frames, and sensor noise, there are limitations to photometric error loss, which can easily introduce inaccurate supervision information and mislead the model into local optimal solutions. To address this issue, this paper introduces a Misleading Supervision Removal Mechanism(MSRM), aimed at enhancing the accuracy of supervisory information by eliminating misleading cues. MSRM employs a composite masking strategy that incorporates both pixel-level and image-level masks, where pixel-level masks include sky masks, edge masks, and edge consistency techniques. MSRM largely eliminate misleading supervision information introduced by sky regions, edge regions, and images with low viewpoint changes. Without altering network architecture, MSRM ensures no increase in inference time, making it a plug-and-play solution. Implemented across various self-supervised monocular depth estimation algorithms, experiments on KITTI, Cityscapes, and Make3D datasets demonstrate that MSRM significantly improves the prediction accuracy and generalization performance of the original algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信