Modularized data-driven approximation of the Koopman operator and generator

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Yang Guo , Manuel Schaller , Karl Worthmann , Stefan Streif
{"title":"Modularized data-driven approximation of the Koopman operator and generator","authors":"Yang Guo ,&nbsp;Manuel Schaller ,&nbsp;Karl Worthmann ,&nbsp;Stefan Streif","doi":"10.1016/j.physd.2025.134651","DOIUrl":null,"url":null,"abstract":"<div><div>Extended Dynamic Mode Decomposition (EDMD) is a widely-used data-driven approach to learn an approximation of the Koopman operator. Consequently, it provides a powerful tool for data-driven analysis, prediction, and control of nonlinear dynamical (control) systems. In this work, we propose a novel modularized EDMD scheme tailored to interconnected systems. To this end, we utilize the structure of the Koopman generator that allows to learn the dynamics of subsystems individually and thus alleviates the curse of dimensionality by considering observable functions on smaller state spaces. Moreover, our approach canonically enables transfer learning if a system encompasses multiple copies of a model as well as efficient adaption to topology changes without retraining. We provide probabilistic finite-data bounds on the estimation error using tools from graph theory. The efficacy of the method is illustrated by means of various numerical examples.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134651"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001307","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Extended Dynamic Mode Decomposition (EDMD) is a widely-used data-driven approach to learn an approximation of the Koopman operator. Consequently, it provides a powerful tool for data-driven analysis, prediction, and control of nonlinear dynamical (control) systems. In this work, we propose a novel modularized EDMD scheme tailored to interconnected systems. To this end, we utilize the structure of the Koopman generator that allows to learn the dynamics of subsystems individually and thus alleviates the curse of dimensionality by considering observable functions on smaller state spaces. Moreover, our approach canonically enables transfer learning if a system encompasses multiple copies of a model as well as efficient adaption to topology changes without retraining. We provide probabilistic finite-data bounds on the estimation error using tools from graph theory. The efficacy of the method is illustrated by means of various numerical examples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信