Diophantine approximation and the Mass Transference Principle: Incorporating the unbounded setup

IF 1.5 1区 数学 Q1 MATHEMATICS
Bing Li , Lingmin Liao , Sanju Velani , Baowei Wang , Evgeniy Zorin
{"title":"Diophantine approximation and the Mass Transference Principle: Incorporating the unbounded setup","authors":"Bing Li ,&nbsp;Lingmin Liao ,&nbsp;Sanju Velani ,&nbsp;Baowei Wang ,&nbsp;Evgeniy Zorin","doi":"10.1016/j.aim.2025.110248","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the Mass Transference Principle for rectangles of Wang &amp; Wu (Math. Ann. 2021) to incorporate the ‘unbounded’ setup; that is, when along some direction the lower order (at infinity) of the side lengths of the rectangles under consideration is infinity. As applications, we obtain the Hausdorff dimension of naturally occurring <span><math><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow></math></span> sets within the classical framework of simultaneous Diophantine approximation and the dynamical framework of shrinking target problems. For instance, concerning the former, for <span><math><mi>τ</mi><mo>&gt;</mo><mn>0</mn></math></span>, let <span><math><mi>S</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span> denote the set of <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> simultaneously satisfying the inequalities <span><math><mo>‖</mo><mi>q</mi><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>‖</mo><mspace></mspace><mo>&lt;</mo><mspace></mspace><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mi>τ</mi></mrow></msup></math></span> and <span><math><mo>‖</mo><mi>q</mi><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>‖</mo><mspace></mspace><mo>&lt;</mo><mspace></mspace><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>q</mi></mrow></msup></math></span> for infinitely many <span><math><mi>q</mi><mo>∈</mo><mi>N</mi></math></span>. Then, the ‘unbounded’ Mass Transference Principle enables us to show that <span><math><msub><mrow><mi>dim</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>⁡</mo><mi>S</mi><mo>(</mo><mi>τ</mi><mo>)</mo><mspace></mspace><mo>=</mo><mspace></mspace><mi>min</mi><mo>⁡</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>/</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>τ</mi><mo>)</mo><mo>}</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110248"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500146X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the Mass Transference Principle for rectangles of Wang & Wu (Math. Ann. 2021) to incorporate the ‘unbounded’ setup; that is, when along some direction the lower order (at infinity) of the side lengths of the rectangles under consideration is infinity. As applications, we obtain the Hausdorff dimension of naturally occurring limsup sets within the classical framework of simultaneous Diophantine approximation and the dynamical framework of shrinking target problems. For instance, concerning the former, for τ>0, let S(τ) denote the set of (x1,x2)R2 simultaneously satisfying the inequalities qx1<qτ and qx2<eq for infinitely many qN. Then, the ‘unbounded’ Mass Transference Principle enables us to show that dimHS(τ)=min{1,3/(1+τ)}.
丢番图近似与传质原理:结合无界设置
我们发展了Wang &矩形的传质原理;吴(数学。Ann. 2021)纳入“无界”设置;也就是说,当沿着某个方向时,所考虑的矩形边长的低阶(在无穷远处)是无穷大的。作为应用,我们在Diophantine近似的经典框架和收缩目标问题的动态框架下,得到了自然存在的limsup集的Hausdorff维数。例如,对于前者,对于τ>;0,设S(τ)表示(x1,x2)∈R2的集合同时满足不等式‖qx1‖<;q−τ和‖qx2‖<;e−q,对于无穷多个q∈N。然后,“无界”传质原理使我们能够证明dimH (S(τ))=min (1,3/(1+τ)})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信