{"title":"NLRs in tumor chemotherapy resistance: A double-edged sword","authors":"Lili Sun , Yanmei Zhu , Yuan Yuan","doi":"10.1016/j.cbi.2025.111499","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a numerous family of cytoplasmic proteins. Members of this family not only function as innate immune sensors, but also serve as transcriptional regulators of major histocompatibility complex class II (MHC II) and major histocompatibility complex class I (MHC I) genes to activate adaptive immunity. Furthermore, NLRs are involved in mediating various signaling pathways, including the inflammasome. To date, extensive research has been conducted on the contradictory roles and mechanisms of NLRs in the occurrence, development, invasion, and metastasis of tumors within the tumor microenvironment (TME). The double-edged sword effect (either positive or negative role) of NLRs in the treatment of malignant tumors has attracted increasing attention in recent years, making these a promising bidirectional therapeutic target for such tumors. Rational utilization of the double-edged sword nature of NLRs can provide a feasible solution for improving the efficacy of malignant tumor treatment and overcoming chemotherapy resistance. This article provides a systematic review of the influence of the NLR family on chemosensitivity in different malignant tumors and the regulatory mechanisms of their upstream and downstream signaling pathways. In doing do, we aim to elucidate the dual role of NLRs in promoting and combating tumor chemotherapy resistance, and elucidate their application value in tumor chemotherapy resistance.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"414 ","pages":"Article 111499"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725001292","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a numerous family of cytoplasmic proteins. Members of this family not only function as innate immune sensors, but also serve as transcriptional regulators of major histocompatibility complex class II (MHC II) and major histocompatibility complex class I (MHC I) genes to activate adaptive immunity. Furthermore, NLRs are involved in mediating various signaling pathways, including the inflammasome. To date, extensive research has been conducted on the contradictory roles and mechanisms of NLRs in the occurrence, development, invasion, and metastasis of tumors within the tumor microenvironment (TME). The double-edged sword effect (either positive or negative role) of NLRs in the treatment of malignant tumors has attracted increasing attention in recent years, making these a promising bidirectional therapeutic target for such tumors. Rational utilization of the double-edged sword nature of NLRs can provide a feasible solution for improving the efficacy of malignant tumor treatment and overcoming chemotherapy resistance. This article provides a systematic review of the influence of the NLR family on chemosensitivity in different malignant tumors and the regulatory mechanisms of their upstream and downstream signaling pathways. In doing do, we aim to elucidate the dual role of NLRs in promoting and combating tumor chemotherapy resistance, and elucidate their application value in tumor chemotherapy resistance.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.