Qiusan Chen , Guoqiang Zhong , Xianmei Fang , Chuangzhen Lin , Shanping Wang , Mingsong Li
{"title":"The multifaceted role of Sestrin 3 (SESN3) in oxidative stress, inflammation and tumorigenesis","authors":"Qiusan Chen , Guoqiang Zhong , Xianmei Fang , Chuangzhen Lin , Shanping Wang , Mingsong Li","doi":"10.1016/j.bbamcr.2025.119938","DOIUrl":null,"url":null,"abstract":"<div><div>The pathogenesis of inflammation and tumors is a focal point of scientific inquiry, with oxidative stress often serving as the primary initiator. Within the human genome, the SESN3 gene encodes the SESN3 protein, a crucial antioxidant stress protein. Acting as a regulatory factor, SESN3 intricately modulates cellular oxidative stress, actively participating in cellular protection and repair mechanisms. Its functions span antioxidative, anti-aging, and anti-tumor properties. The expression of SESN3 is closely linked to cellular and oxidative stress, metabolic status, and specific signaling pathways. This review aims to delve into the origins and functions of SESN3, its role within signaling pathways, and its contributions to inflammation and tumorigenesis.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 5","pages":"Article 119938"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000436","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pathogenesis of inflammation and tumors is a focal point of scientific inquiry, with oxidative stress often serving as the primary initiator. Within the human genome, the SESN3 gene encodes the SESN3 protein, a crucial antioxidant stress protein. Acting as a regulatory factor, SESN3 intricately modulates cellular oxidative stress, actively participating in cellular protection and repair mechanisms. Its functions span antioxidative, anti-aging, and anti-tumor properties. The expression of SESN3 is closely linked to cellular and oxidative stress, metabolic status, and specific signaling pathways. This review aims to delve into the origins and functions of SESN3, its role within signaling pathways, and its contributions to inflammation and tumorigenesis.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.