Surfactant-Assisted Synthesis of Semiconductor Hybrid Cd/Hg-Selenidostannates with Enhanced Optoelectronic and Piezoelectric Properties

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Mohamed Saber Lassoued, Yue-Qiao Hu, FAIZAN AHMAD, Yan-Zhen Zheng
{"title":"Surfactant-Assisted Synthesis of Semiconductor Hybrid Cd/Hg-Selenidostannates with Enhanced Optoelectronic and Piezoelectric Properties","authors":"Mohamed Saber Lassoued, Yue-Qiao Hu, FAIZAN AHMAD, Yan-Zhen Zheng","doi":"10.1039/d5qi00444f","DOIUrl":null,"url":null,"abstract":"Multifunctional compounds have attracted significant attention for their wide-ranging applications in advanced technologies. In this study, we synthesized two semiconductor hybrid Cd/Hg-selenidostannates, (H2BPP)2CdSn3Se9 and (H2DMP)2Hg4Sn4Se17, employing 1, 3-bis(4-piperidinyl) propane and 1, 5-diamino-2-methylpentane through a surfactant-assisted thermal method. Remarkably, these hybrid chalcogenides are highly soluble in DMF, facilitating the formation of smooth, pinhole-free thin films via spin-coating method. (H2BPP)2CdSn3Se9 and (H2DMP)2Hg4Sn4Se17 films exhibit exceptional stability under high humidity and heat, with semiconducting band gaps of 2.12 eV and 2.21 eV, respectively. These band gaps enable strong light absorption and charge carrier generation, which directly contribute to their significant photocurrent responses. Specifically, Photocurrent measurements show Ilight of 1.5 µA cm⁻² and 1 µA cm⁻² at 0.8 V for (H₂BPP)₂CdSn₃Se₉ and (H₂DMP)₂Hg₄Sn₄Se₁₇, notably higher than the 0.30 mA cm² observed for the commercially available SnSe₂ electrode under the same conditions. Building on these interesting electrical properties, (H2BPP)2CdSn3Se9 also showed notable piezoelectric properties, resulting from its unique structural framework that supports both efficient charge transport and mechanical responsiveness. These promising stability and multifunctional characteristics highlight the potential of these hybrid selenidostannates for advanced optoelectronic and piezoelectric applications.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"34 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00444f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Multifunctional compounds have attracted significant attention for their wide-ranging applications in advanced technologies. In this study, we synthesized two semiconductor hybrid Cd/Hg-selenidostannates, (H2BPP)2CdSn3Se9 and (H2DMP)2Hg4Sn4Se17, employing 1, 3-bis(4-piperidinyl) propane and 1, 5-diamino-2-methylpentane through a surfactant-assisted thermal method. Remarkably, these hybrid chalcogenides are highly soluble in DMF, facilitating the formation of smooth, pinhole-free thin films via spin-coating method. (H2BPP)2CdSn3Se9 and (H2DMP)2Hg4Sn4Se17 films exhibit exceptional stability under high humidity and heat, with semiconducting band gaps of 2.12 eV and 2.21 eV, respectively. These band gaps enable strong light absorption and charge carrier generation, which directly contribute to their significant photocurrent responses. Specifically, Photocurrent measurements show Ilight of 1.5 µA cm⁻² and 1 µA cm⁻² at 0.8 V for (H₂BPP)₂CdSn₃Se₉ and (H₂DMP)₂Hg₄Sn₄Se₁₇, notably higher than the 0.30 mA cm² observed for the commercially available SnSe₂ electrode under the same conditions. Building on these interesting electrical properties, (H2BPP)2CdSn3Se9 also showed notable piezoelectric properties, resulting from its unique structural framework that supports both efficient charge transport and mechanical responsiveness. These promising stability and multifunctional characteristics highlight the potential of these hybrid selenidostannates for advanced optoelectronic and piezoelectric applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信