Lorenzo Facciaroni, Costantino Ricciuti, Enrico Scalas, Bruno Toaldo
{"title":"Para-Markov chains and related non-local equations","authors":"Lorenzo Facciaroni, Costantino Ricciuti, Enrico Scalas, Bruno Toaldo","doi":"10.1007/s13540-025-00390-9","DOIUrl":null,"url":null,"abstract":"<p>There is a well-established theory that links semi-Markov chains having Mittag-Leffler waiting times to time-fractional equations. We here go beyond the semi-Markov setting, by defining some non-Markovian chains whose waiting times, although marginally Mittag-Leffler, are assumed to be stochastically dependent. This creates a long memory tail in the evolution, unlike what happens for semi-Markov processes. As a special case of these chains, we study a particular counting process which extends the well-known fractional Poisson process, the last one having independent, Mittag-Leffler waiting times.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"21 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00390-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a well-established theory that links semi-Markov chains having Mittag-Leffler waiting times to time-fractional equations. We here go beyond the semi-Markov setting, by defining some non-Markovian chains whose waiting times, although marginally Mittag-Leffler, are assumed to be stochastically dependent. This creates a long memory tail in the evolution, unlike what happens for semi-Markov processes. As a special case of these chains, we study a particular counting process which extends the well-known fractional Poisson process, the last one having independent, Mittag-Leffler waiting times.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.