Jin Wang, Chengcheng Zhu, Jing Tan, Jing-Juan Xu, Chen Wang
{"title":"Engineered Artificial Nanochannels with Cell Membrane Nanointerface for Ultrasensitive Detection and Discrimination of Multiple Bacterial Infections","authors":"Jin Wang, Chengcheng Zhu, Jing Tan, Jing-Juan Xu, Chen Wang","doi":"10.1021/jacs.5c01542","DOIUrl":null,"url":null,"abstract":"Bacterial infection is a major threat to global public health, which urgently require rapid and reliable analytical techniques for complex biological samples but remains a challenge. Herein, we developed an artificial affinity nanochannel with a cell membrane nanointerface, which enables broad-spectrum capture and specifically discriminates multiple pathogens. The macrophage membrane is pre-engineered with azide groups by a biometabolic process and then modified on a porous anodized aluminum oxide substrate via click reactions, preserving dynamic lateral fluidity and broad-spectrum recognition capacity. The macrophage membrane/anodized aluminum oxide membrane is evaluated with remarkable ion current rectification performance with a distinct current response upon bacterial binding, which realizes ultrasensitive detection of bacteria. Moreover, discrimination of bacterial species is achieved by further introducing specific antibodies. The nanochannel-based biosensor allows accurately capturing and quantifying multiple bacteria over a broad linear range, with a detection limit as low as 2.7 CFU/mL. Finally, this nanoplatform is successfully applied for broad-spectrum capture of bacterial species in several practical application scenarios including water, serum, and blood samples, achieving ultrasensitive detection and identification of bacteria below 10 CFU/mL. Overall, the proposed nanochannel with cell membrane nanointerface shows broad applicability in bacterial analysis, highlighting its potential in diagnosing infectious diseases.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"33 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01542","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infection is a major threat to global public health, which urgently require rapid and reliable analytical techniques for complex biological samples but remains a challenge. Herein, we developed an artificial affinity nanochannel with a cell membrane nanointerface, which enables broad-spectrum capture and specifically discriminates multiple pathogens. The macrophage membrane is pre-engineered with azide groups by a biometabolic process and then modified on a porous anodized aluminum oxide substrate via click reactions, preserving dynamic lateral fluidity and broad-spectrum recognition capacity. The macrophage membrane/anodized aluminum oxide membrane is evaluated with remarkable ion current rectification performance with a distinct current response upon bacterial binding, which realizes ultrasensitive detection of bacteria. Moreover, discrimination of bacterial species is achieved by further introducing specific antibodies. The nanochannel-based biosensor allows accurately capturing and quantifying multiple bacteria over a broad linear range, with a detection limit as low as 2.7 CFU/mL. Finally, this nanoplatform is successfully applied for broad-spectrum capture of bacterial species in several practical application scenarios including water, serum, and blood samples, achieving ultrasensitive detection and identification of bacteria below 10 CFU/mL. Overall, the proposed nanochannel with cell membrane nanointerface shows broad applicability in bacterial analysis, highlighting its potential in diagnosing infectious diseases.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.