{"title":"Particle pinning effect on grain boundary and double peak-aging characteristic in a hot-extruded Mg-Zn-based alloy","authors":"Wei Liu, Kaile Wang, Yuntao Zhang, Chuan Shuai, Taoze Xie, Wenyu Liu, Hua Hou, Yuhong Zhao","doi":"10.1016/j.ijplas.2025.104324","DOIUrl":null,"url":null,"abstract":"To overcome bottleneck of strength-ductility trade-off is a challenge in Mg-Zn-based alloys. In this work, we develop an age-hardening Mg-1.0Zn-0.1Ca-0.1Al-0.1Mn (wt.%) hot-extruded alloy with better strength-ductility synergy by synergistic heterostructure and nanoprecipitate, exhibiting a tensile yield strength of 352 MPa, an ultimate tensile strength of 413 MPa and an elongation of 15.2 %, respectively. Besides, dynamic recrystallization and dynamic precipitation at different die angles (30° and 90°) and extrusion temperatures (220°C, 235°C and 250°C), and aging precipitation are systematically investigated. Particle pinning effect on grain boundary (GB) considering particle radius and strengthening effects are further clarified. Firstly, under large die angle (90°) and low extrusion temperature (220°C), typical heterostructure containing recrystallized regions and non-recrystallized regions is achieved due to significant particle pinning effect of nanoscale Ca<sub>2</sub>Mg<sub>6</sub>Zn<sub>3</sub> and Al<sub>8</sub>Mn<sub>5</sub> particles, and solute dragging effect of Zn and Ca elements on GB. Phase-field simulation and experimental validation showing the evolution of bow-shape GB under significant particle pinning force during the particle-GB interaction. Meanwhile, the phase-field simulations show that the maximum particle pinning force is enhanced as increasing of the particle radius. Secondly, upon ageing at 180°C, a distinct double peak-aging characteristic emerges in the hetero-structured Mg-1.0Zn-0.1Ca-0.1Al-0.1Mn hot-extruded alloy. The first ageing peak mainly arises from the precipitation of GP zones, while the second ageing peak primarily originates from the co-precipitation of β<sub>1</sub>´ and β<sub>2</sub>´ phases. Finally, hetero-deformation induced strengthening, nanoprecipitate-reinforced Orowan strengthening and deformation coordination by twins and non-basal slips contribute to the strength-ductility synergy. These results provide valuable insights for developing high-performance Mg-Zn-based alloys.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"58 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104324","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome bottleneck of strength-ductility trade-off is a challenge in Mg-Zn-based alloys. In this work, we develop an age-hardening Mg-1.0Zn-0.1Ca-0.1Al-0.1Mn (wt.%) hot-extruded alloy with better strength-ductility synergy by synergistic heterostructure and nanoprecipitate, exhibiting a tensile yield strength of 352 MPa, an ultimate tensile strength of 413 MPa and an elongation of 15.2 %, respectively. Besides, dynamic recrystallization and dynamic precipitation at different die angles (30° and 90°) and extrusion temperatures (220°C, 235°C and 250°C), and aging precipitation are systematically investigated. Particle pinning effect on grain boundary (GB) considering particle radius and strengthening effects are further clarified. Firstly, under large die angle (90°) and low extrusion temperature (220°C), typical heterostructure containing recrystallized regions and non-recrystallized regions is achieved due to significant particle pinning effect of nanoscale Ca2Mg6Zn3 and Al8Mn5 particles, and solute dragging effect of Zn and Ca elements on GB. Phase-field simulation and experimental validation showing the evolution of bow-shape GB under significant particle pinning force during the particle-GB interaction. Meanwhile, the phase-field simulations show that the maximum particle pinning force is enhanced as increasing of the particle radius. Secondly, upon ageing at 180°C, a distinct double peak-aging characteristic emerges in the hetero-structured Mg-1.0Zn-0.1Ca-0.1Al-0.1Mn hot-extruded alloy. The first ageing peak mainly arises from the precipitation of GP zones, while the second ageing peak primarily originates from the co-precipitation of β1´ and β2´ phases. Finally, hetero-deformation induced strengthening, nanoprecipitate-reinforced Orowan strengthening and deformation coordination by twins and non-basal slips contribute to the strength-ductility synergy. These results provide valuable insights for developing high-performance Mg-Zn-based alloys.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.