Alexandre Chaduteau, Nyan Raess, Henry Davenport, Frank Schindler
{"title":"Momentum-space modulated symmetries in the Luttinger liquid","authors":"Alexandre Chaduteau, Nyan Raess, Henry Davenport, Frank Schindler","doi":"10.1103/physrevb.111.165105","DOIUrl":null,"url":null,"abstract":"The chiral Luttinger liquid develops quantum chaos as soon as a—however slight—nonlinear dispersion is introduced for the microscopic electronic degrees of freedom. For this nonlinear version of the model, we identify an infinite family of translation-invariant interaction potentials with corresponding modulated symmetries. These symmetries are highly unconventional: they are modulated in momentum space (and do not seem to have an easy physical interpretation). We develop a systematic understanding of these symmetries and study the resulting blocks in the Hamiltonian. In particular, this approach allows us to predict the analytic Hamiltonian block sizes and derive asymptotic scaling laws in the limit of large total momentum. These blocks are reminiscent of Hilbert space fragmentation in that, even though they are labeled by a symmetry, this symmetry is highly nonlocal and does not have a simple interpretation. We corroborate this result by studying entanglement entropy and level statistics. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"62 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.165105","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The chiral Luttinger liquid develops quantum chaos as soon as a—however slight—nonlinear dispersion is introduced for the microscopic electronic degrees of freedom. For this nonlinear version of the model, we identify an infinite family of translation-invariant interaction potentials with corresponding modulated symmetries. These symmetries are highly unconventional: they are modulated in momentum space (and do not seem to have an easy physical interpretation). We develop a systematic understanding of these symmetries and study the resulting blocks in the Hamiltonian. In particular, this approach allows us to predict the analytic Hamiltonian block sizes and derive asymptotic scaling laws in the limit of large total momentum. These blocks are reminiscent of Hilbert space fragmentation in that, even though they are labeled by a symmetry, this symmetry is highly nonlocal and does not have a simple interpretation. We corroborate this result by studying entanglement entropy and level statistics. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter