New Machine Learning Method for Medical Image and Microarray Data Analysis for Heart Disease Classification.

Jinglan Guo, Jue Liao, Yuanlian Chen, Lisha Wen, Song Cheng
{"title":"New Machine Learning Method for Medical Image and Microarray Data Analysis for Heart Disease Classification.","authors":"Jinglan Guo, Jue Liao, Yuanlian Chen, Lisha Wen, Song Cheng","doi":"10.1007/s10278-025-01492-9","DOIUrl":null,"url":null,"abstract":"<p><p>Microarray technology has become a vital tool in cardiovascular research, enabling the simultaneous analysis of thousands of gene expressions. This capability provides a robust foundation for heart disease classification and biomarker discovery. However, the high dimensionality, noise, and sparsity of microarray data present significant challenges for effective analysis. Gene selection, which aims to identify the most relevant subset of genes, is a crucial preprocessing step for improving classification accuracy, reducing computational complexity, and enhancing biological interpretability. Traditional gene selection methods often fall short in capturing complex, nonlinear interactions among genes, limiting their effectiveness in heart disease classification tasks. In this study, we propose a novel framework that leverages deep neural networks (DNNs) for optimizing gene selection and heart disease classification using microarray data. DNNs, known for their ability to model complex, nonlinear patterns, are integrated with feature selection techniques to address the challenges of high-dimensional data. The proposed method, DeepGeneNet (DGN), combines gene selection and DNN-based classification into a unified framework, ensuring robust performance and meaningful insights into the underlying biological mechanisms. Additionally, the framework incorporates hyperparameter optimization and innovative U-Net segmentation techniques to further enhance computational performance and classification accuracy. These optimizations enable DGN to deliver robust and scalable results, outperforming traditional methods in both predictive accuracy and interpretability. Experimental results demonstrate that the proposed approach significantly improves heart disease classification accuracy compared to other methods. By focusing on the interplay between gene selection and deep learning, this work advances the field of cardiovascular genomics, providing a scalable and interpretable framework for future applications.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01492-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microarray technology has become a vital tool in cardiovascular research, enabling the simultaneous analysis of thousands of gene expressions. This capability provides a robust foundation for heart disease classification and biomarker discovery. However, the high dimensionality, noise, and sparsity of microarray data present significant challenges for effective analysis. Gene selection, which aims to identify the most relevant subset of genes, is a crucial preprocessing step for improving classification accuracy, reducing computational complexity, and enhancing biological interpretability. Traditional gene selection methods often fall short in capturing complex, nonlinear interactions among genes, limiting their effectiveness in heart disease classification tasks. In this study, we propose a novel framework that leverages deep neural networks (DNNs) for optimizing gene selection and heart disease classification using microarray data. DNNs, known for their ability to model complex, nonlinear patterns, are integrated with feature selection techniques to address the challenges of high-dimensional data. The proposed method, DeepGeneNet (DGN), combines gene selection and DNN-based classification into a unified framework, ensuring robust performance and meaningful insights into the underlying biological mechanisms. Additionally, the framework incorporates hyperparameter optimization and innovative U-Net segmentation techniques to further enhance computational performance and classification accuracy. These optimizations enable DGN to deliver robust and scalable results, outperforming traditional methods in both predictive accuracy and interpretability. Experimental results demonstrate that the proposed approach significantly improves heart disease classification accuracy compared to other methods. By focusing on the interplay between gene selection and deep learning, this work advances the field of cardiovascular genomics, providing a scalable and interpretable framework for future applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信