Machine learning-based model assists in differentiating Mycobacterium avium Complex Pulmonary Disease from Pulmonary Tuberculosis: A Multicenter Study.

Jiacheng Zhang, Tingting Huang, Xu He, Dingsheng Han, Qian Xu, Fukun Shi, Lan Zhang, Dailun Hou
{"title":"Machine learning-based model assists in differentiating Mycobacterium avium Complex Pulmonary Disease from Pulmonary Tuberculosis: A Multicenter Study.","authors":"Jiacheng Zhang, Tingting Huang, Xu He, Dingsheng Han, Qian Xu, Fukun Shi, Lan Zhang, Dailun Hou","doi":"10.1007/s10278-025-01486-7","DOIUrl":null,"url":null,"abstract":"<p><p>The number of Mycobacterium avium-intracellulare complex pulmonary disease patients is increasing globally. Distinguishing Mycobacterium avium-intracellulare complex pulmonary disease from pulmonary tuberculosis is difficult due to similar manifestations and characteristics. We aimed to build and validate a machine learning model using clinical data and computed tomography features to differentiate them. This multi-centered, retrospective study included 169 patients diagnosed with Mycobacterium avium-intracellulare complex and pulmonary tuberculosis from date to date. Data were analyzed, and logistic regression, random forest, and support vector machine models were established and validated. Performance was evaluated using receiver operating characteristic and precision-recall curves. In total, 84 patients with Mycobacterium avium-intracellulare complex pulmonary disease and 85 with pulmonary tuberculosis were analyzed. Patients with Mycobacterium avium-intracellulare complex pulmonary disease were older. Hemoptysis rate, cavity number and morphology, bronchiectasis type, and distribution differed. The support vector machine model performed better. In the training set, the area under the curve was 0.960, and in the validation set it was 0.885. The precision-recall curve showed high accuracy and low recall for the support vector machine model. The support vector machine learning-based model, which integrates clinical data and computed tomography imaging features, exhibited excellent diagnostic performance and can assist in differentiating Mycobacterium avium-intracellulare complex pulmonary disease from pulmonary tuberculosis.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01486-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of Mycobacterium avium-intracellulare complex pulmonary disease patients is increasing globally. Distinguishing Mycobacterium avium-intracellulare complex pulmonary disease from pulmonary tuberculosis is difficult due to similar manifestations and characteristics. We aimed to build and validate a machine learning model using clinical data and computed tomography features to differentiate them. This multi-centered, retrospective study included 169 patients diagnosed with Mycobacterium avium-intracellulare complex and pulmonary tuberculosis from date to date. Data were analyzed, and logistic regression, random forest, and support vector machine models were established and validated. Performance was evaluated using receiver operating characteristic and precision-recall curves. In total, 84 patients with Mycobacterium avium-intracellulare complex pulmonary disease and 85 with pulmonary tuberculosis were analyzed. Patients with Mycobacterium avium-intracellulare complex pulmonary disease were older. Hemoptysis rate, cavity number and morphology, bronchiectasis type, and distribution differed. The support vector machine model performed better. In the training set, the area under the curve was 0.960, and in the validation set it was 0.885. The precision-recall curve showed high accuracy and low recall for the support vector machine model. The support vector machine learning-based model, which integrates clinical data and computed tomography imaging features, exhibited excellent diagnostic performance and can assist in differentiating Mycobacterium avium-intracellulare complex pulmonary disease from pulmonary tuberculosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信