GaussEdit: Adaptive 3D Scene Editing with Text and Image Prompts.

Zhenyu Shu, Junlong Yu, Kai Chao, Shiqing Xin, Ligang Liu
{"title":"GaussEdit: Adaptive 3D Scene Editing with Text and Image Prompts.","authors":"Zhenyu Shu, Junlong Yu, Kai Chao, Shiqing Xin, Ligang Liu","doi":"10.1109/TVCG.2025.3556745","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents GaussEdit, a framework for adaptive 3D scene editing guided by text and image prompts. GaussEdit leverages 3D Gaussian Splatting as its backbone for scene representation, enabling convenient Region of Interest selection and efficient editing through a three-stage process. The first stage involves initializing the 3D Gaussians to ensure high-quality edits. The second stage employs an Adaptive Global-Local Optimization strategy to balance global scene coherence and detailed local edits and a category-guided regularization technique to alleviate the Janus problem. The final stage enhances the texture of the edited objects using a sophisticated image-to-image synthesis technique, ensuring that the results are visually realistic and align closely with the given prompts. Our experimental results demonstrate that GaussEdit surpasses existing methods in editing accuracy, visual fidelity, and processing speed. By successfully embedding user-specified concepts into 3D scenes, GaussEdit is a powerful tool for detailed and user-driven 3D scene editing, offering significant improvements over traditional methods.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3556745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents GaussEdit, a framework for adaptive 3D scene editing guided by text and image prompts. GaussEdit leverages 3D Gaussian Splatting as its backbone for scene representation, enabling convenient Region of Interest selection and efficient editing through a three-stage process. The first stage involves initializing the 3D Gaussians to ensure high-quality edits. The second stage employs an Adaptive Global-Local Optimization strategy to balance global scene coherence and detailed local edits and a category-guided regularization technique to alleviate the Janus problem. The final stage enhances the texture of the edited objects using a sophisticated image-to-image synthesis technique, ensuring that the results are visually realistic and align closely with the given prompts. Our experimental results demonstrate that GaussEdit surpasses existing methods in editing accuracy, visual fidelity, and processing speed. By successfully embedding user-specified concepts into 3D scenes, GaussEdit is a powerful tool for detailed and user-driven 3D scene editing, offering significant improvements over traditional methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信