A novel skeletal muscle quantitative method and deep learning-based sarcopenia diagnosis for cervical cancer patients treated with radiotherapy.

Medical physics Pub Date : 2025-04-01 DOI:10.1002/mp.17791
Zhe Wu, Lihua Deng, Wanyang Wu, Bin Zeng, Cheng Xu, Li Liu, Mujun Liu, Yi Wu
{"title":"A novel skeletal muscle quantitative method and deep learning-based sarcopenia diagnosis for cervical cancer patients treated with radiotherapy.","authors":"Zhe Wu, Lihua Deng, Wanyang Wu, Bin Zeng, Cheng Xu, Li Liu, Mujun Liu, Yi Wu","doi":"10.1002/mp.17791","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is associated with decreased survival in cervical cancer patients treated with radiotherapy. Cone-beam computed tomography (CBCT) was widely used in image-guided radiotherapy. Sarcopenia is assessed by the skeletal muscle index (SMI) of third lumbar vertebra (L3). Whereas, L3 is usually not included on the cervical cancer radiotherapy CBCT images.</p><p><strong>Purpose: </strong>We aimed to explore the usefulness of CBCT for evaluating SMI and deep learning (DL)-based automatic segmentation and sarcopenia diagnosis for cervical cancer radiotherapy patients. We evaluated the SMI through fifth lumbar vertebra (L5).</p><p><strong>Methods: </strong>First, L3, L5 skeletal muscle area (SMA) were measured on CT and CBCT. The agreement of L5 skeletal muscle segmentation on CBCT was evaluated using the intraclass correlation coefficient (ICC). The relationships between L5-SMI<sub>CT</sub> and L3-SMI<sub>CT</sub>, L5-SMI<sub>CBCT</sub> were established and assessed by Pearson analysis, Bland-Altman plots. Second, the consequent CBCT images of 248 cervical cancer radiotherapy patients with whole L5 were collected as DL-based automatic segmentation. An independent external validation dataset was used. We proposed an end-to-end anatomical distance-guided dual branch feature fusion network to segment L5 skeletal muscle on CBCT images. The automatic segmentation results were used for sarcopenia diagnosis evaluation.</p><p><strong>Results: </strong>The ICC values were greater than 0.95. The Pearson correlation coefficients (PCC) between L5-SMI<sub>CT</sub> and L3-SMI<sub>CT</sub> is 0.894. The PCC between L5-SMI<sub>CT</sub> and L5-SMI<sub>CBCT</sub> is 0.917. The L3-SMI<sub>CT</sub> could be estimated through L5-SMI<sub>CBCT</sub> by a linear regression equation. The adjusted R<sup>2</sup> values were greater than 0.7. The dice similarity coefficient of automatic segmentation is 87.09%. Our proposed DL network predicted sarcopenia with 84.38% accuracy and 85.71% F1-score. In external validation dataset, the sarcopenia diagnosis accuracy and F1-score are 80% and 82.61%, respectively.</p><p><strong>Conclusion: </strong>The SMI quantitative measurement using CBCT for cervical cancer patients is feasible. And the DL network has the potential to assist in the sarcopenia diagnosis using CBCT images.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sarcopenia is associated with decreased survival in cervical cancer patients treated with radiotherapy. Cone-beam computed tomography (CBCT) was widely used in image-guided radiotherapy. Sarcopenia is assessed by the skeletal muscle index (SMI) of third lumbar vertebra (L3). Whereas, L3 is usually not included on the cervical cancer radiotherapy CBCT images.

Purpose: We aimed to explore the usefulness of CBCT for evaluating SMI and deep learning (DL)-based automatic segmentation and sarcopenia diagnosis for cervical cancer radiotherapy patients. We evaluated the SMI through fifth lumbar vertebra (L5).

Methods: First, L3, L5 skeletal muscle area (SMA) were measured on CT and CBCT. The agreement of L5 skeletal muscle segmentation on CBCT was evaluated using the intraclass correlation coefficient (ICC). The relationships between L5-SMICT and L3-SMICT, L5-SMICBCT were established and assessed by Pearson analysis, Bland-Altman plots. Second, the consequent CBCT images of 248 cervical cancer radiotherapy patients with whole L5 were collected as DL-based automatic segmentation. An independent external validation dataset was used. We proposed an end-to-end anatomical distance-guided dual branch feature fusion network to segment L5 skeletal muscle on CBCT images. The automatic segmentation results were used for sarcopenia diagnosis evaluation.

Results: The ICC values were greater than 0.95. The Pearson correlation coefficients (PCC) between L5-SMICT and L3-SMICT is 0.894. The PCC between L5-SMICT and L5-SMICBCT is 0.917. The L3-SMICT could be estimated through L5-SMICBCT by a linear regression equation. The adjusted R2 values were greater than 0.7. The dice similarity coefficient of automatic segmentation is 87.09%. Our proposed DL network predicted sarcopenia with 84.38% accuracy and 85.71% F1-score. In external validation dataset, the sarcopenia diagnosis accuracy and F1-score are 80% and 82.61%, respectively.

Conclusion: The SMI quantitative measurement using CBCT for cervical cancer patients is feasible. And the DL network has the potential to assist in the sarcopenia diagnosis using CBCT images.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信