Enhancing speech intelligibility in optical microphone systems through physics-informed data augmentation.

IF 1.2 Q3 ACOUSTICS
Jia-Wei Chen, Jia-Hui Li, Yi-Hao Jiang, Yi-Chang Wu, Ying-Hui Lai
{"title":"Enhancing speech intelligibility in optical microphone systems through physics-informed data augmentation.","authors":"Jia-Wei Chen, Jia-Hui Li, Yi-Hao Jiang, Yi-Chang Wu, Ying-Hui Lai","doi":"10.1121/10.0036356","DOIUrl":null,"url":null,"abstract":"<p><p>Laser doppler vibrometers (LDVs) facilitate noncontact speech acquisition; however, they are prone to material-dependent spectral distortions and speckle noise, which degrade intelligibility in noisy environments. This study proposes a data augmentation method that incorporates material-specific and impulse noises to simulate LDV-induced distortions. The proposed approach utilizes a gated convolutional neural network with HiFi-GAN to enhance speech intelligibility across various material and low signal-to-noise ratio (SNR) conditions, achieving a short-time objective intelligibility score of 0.76 at 0 dB SNR. These findings provide valuable insights into optimized augmentation and deep-learning techniques for enhancing LDV-based speech recordings in practical applications.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Laser doppler vibrometers (LDVs) facilitate noncontact speech acquisition; however, they are prone to material-dependent spectral distortions and speckle noise, which degrade intelligibility in noisy environments. This study proposes a data augmentation method that incorporates material-specific and impulse noises to simulate LDV-induced distortions. The proposed approach utilizes a gated convolutional neural network with HiFi-GAN to enhance speech intelligibility across various material and low signal-to-noise ratio (SNR) conditions, achieving a short-time objective intelligibility score of 0.76 at 0 dB SNR. These findings provide valuable insights into optimized augmentation and deep-learning techniques for enhancing LDV-based speech recordings in practical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信