{"title":"Mesenchymal stem cell-specific Sirt1 overexpression prevents sarcopenia induced by 1,25-dihydroxyvitamin D deficiency.","authors":"Haiyun Chen, Biqi Ren, Jing Wang, Xingchen Liu, Xiangjiao Yi, David Goltzman, Dengshun Miao","doi":"10.18632/aging.206232","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia, characterized by an age-related decline in skeletal muscle mass and function, is closely linked to vitamin D deficiency. This study examines the role of Sirtuin 1 (Sirt1) and its regulation by vitamin D in preventing sarcopenia. Utilizing wild-type, 1α-hydroxylase knockout (1α(OH)ase<sup>-/-</sup>), and Sirt1 transgenic (Sirt1<sup>Tg</sup>) 1α(OH)ase<sup>-/-</sup> mice, we investigated muscle Sirt1 levels, muscle mass, fiber type, and senescence markers. Our results demonstrated that 1,25-Dihydroxyvitamin D (1,25(OH)2D3) upregulated Sirt1 and myogenic factor MyoD1 expression in C2C12 myoblasts via VDR-mediated transcription. Sirt1 overexpression in mesenchymal stem cells (MSCs) significantly mitigated muscle mass reduction, improved fiber cross-sectional area, and increased type II fiber numbers in 1α(OH)ase<sup>-/-</sup> mice. Mechanistically, 1,25(OH)2D3 promoted muscle cell health by enhancing Sirt1 expression, which in turn reduced muscle cell senescence and the senescence-associated secretory phenotype (SASP) through decreased levels of acetylated nuclear p53 and p65, maintaining their cytoplasmic localization. Additionally, Sirt1 overexpression accelerated muscle regeneration post-injury by increasing embryonic myosin heavy chain expression and cell proliferation. These findings underscore the therapeutic potential of targeting vitamin D and Sirt1 pathways to prevent sarcopenia, suggesting that supplementation with active vitamin D and consequent Sirt1 activation could be effective strategies for managing age-related muscle wasting.</p>","PeriodicalId":55547,"journal":{"name":"Aging-Us","volume":"null ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging-Us","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18632/aging.206232","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcopenia, characterized by an age-related decline in skeletal muscle mass and function, is closely linked to vitamin D deficiency. This study examines the role of Sirtuin 1 (Sirt1) and its regulation by vitamin D in preventing sarcopenia. Utilizing wild-type, 1α-hydroxylase knockout (1α(OH)ase-/-), and Sirt1 transgenic (Sirt1Tg) 1α(OH)ase-/- mice, we investigated muscle Sirt1 levels, muscle mass, fiber type, and senescence markers. Our results demonstrated that 1,25-Dihydroxyvitamin D (1,25(OH)2D3) upregulated Sirt1 and myogenic factor MyoD1 expression in C2C12 myoblasts via VDR-mediated transcription. Sirt1 overexpression in mesenchymal stem cells (MSCs) significantly mitigated muscle mass reduction, improved fiber cross-sectional area, and increased type II fiber numbers in 1α(OH)ase-/- mice. Mechanistically, 1,25(OH)2D3 promoted muscle cell health by enhancing Sirt1 expression, which in turn reduced muscle cell senescence and the senescence-associated secretory phenotype (SASP) through decreased levels of acetylated nuclear p53 and p65, maintaining their cytoplasmic localization. Additionally, Sirt1 overexpression accelerated muscle regeneration post-injury by increasing embryonic myosin heavy chain expression and cell proliferation. These findings underscore the therapeutic potential of targeting vitamin D and Sirt1 pathways to prevent sarcopenia, suggesting that supplementation with active vitamin D and consequent Sirt1 activation could be effective strategies for managing age-related muscle wasting.