AntiFold: improved structure-based antibody design using inverse folding.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-21 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae202
Magnus Haraldson Høie, Alissa M Hummer, Tobias H Olsen, Broncio Aguilar-Sanjuan, Morten Nielsen, Charlotte M Deane
{"title":"AntiFold: improved structure-based antibody design using inverse folding.","authors":"Magnus Haraldson Høie, Alissa M Hummer, Tobias H Olsen, Broncio Aguilar-Sanjuan, Morten Nielsen, Charlotte M Deane","doi":"10.1093/bioadv/vbae202","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The design and optimization of antibodies requires an intricate balance across multiple properties. Protein inverse folding models, capable of generating diverse sequences folding into the same structure, are promising tools for maintaining structural integrity during antibody design. Here, we present AntiFold, an antibody-specific inverse folding model, fine-tuned from ESM-IF1 on solved and predicted antibody structures. AntiFold outperforms existing inverse folding tools on sequence recovery across complementarity-determining regions, with designed sequences showing high structural similarity to their solved counterpart. It additionally achieves stronger correlations when predicting antibody-antigen binding affinity in a zero-shot manner. AntiFold assigns low probabilities to mutations that disrupt antigen binding, synergizing with protein language model residue probabilities, and demonstrates promise for guiding antibody optimization while retaining structure-related properties.</p><p><strong>Availability and implementation: </strong>AntiFold is freely available under the BSD 3-Clause as a web server (https://opig.stats.ox.ac.uk/webapps/antifold/) and pip-installable package (https://github.com/oxpig/AntiFold).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae202"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The design and optimization of antibodies requires an intricate balance across multiple properties. Protein inverse folding models, capable of generating diverse sequences folding into the same structure, are promising tools for maintaining structural integrity during antibody design. Here, we present AntiFold, an antibody-specific inverse folding model, fine-tuned from ESM-IF1 on solved and predicted antibody structures. AntiFold outperforms existing inverse folding tools on sequence recovery across complementarity-determining regions, with designed sequences showing high structural similarity to their solved counterpart. It additionally achieves stronger correlations when predicting antibody-antigen binding affinity in a zero-shot manner. AntiFold assigns low probabilities to mutations that disrupt antigen binding, synergizing with protein language model residue probabilities, and demonstrates promise for guiding antibody optimization while retaining structure-related properties.

Availability and implementation: AntiFold is freely available under the BSD 3-Clause as a web server (https://opig.stats.ox.ac.uk/webapps/antifold/) and pip-installable package (https://github.com/oxpig/AntiFold).

摘要:抗体的设计和优化需要在多种特性之间取得复杂的平衡。蛋白质反折叠模型能够生成折叠成相同结构的不同序列,是在抗体设计过程中保持结构完整性的有效工具。在此,我们介绍一种抗体特异性反折叠模型 AntiFold,它是根据已解决和预测的抗体结构对 ESM-IF1 进行微调后得出的。AntiFold 在互补性决定区域的序列恢复方面优于现有的反折叠工具,其设计的序列与已解决的对应序列具有很高的结构相似性。此外,它还能在预测抗体与抗原结合亲和力时实现更强的相关性。AntiFold 对破坏抗原结合的突变赋予较低的概率,与蛋白质语言模型残基概率协同作用,在保留结构相关特性的同时有望指导抗体优化:AntiFold 在 BSD 3 条款下以网络服务器 (https://opig.stats.ox.ac.uk/webapps/antifold/) 和 pip-installable 软件包 (https://github.com/oxpig/AntiFold) 的形式免费提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信