Aggregating residue-level protein language model embeddings with optimal transport.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-20 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf060
Navid NaderiAlizadeh, Rohit Singh
{"title":"Aggregating residue-level protein language model embeddings with optimal transport.","authors":"Navid NaderiAlizadeh, Rohit Singh","doi":"10.1093/bioadv/vbaf060","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Protein language models (PLMs) have emerged as powerful approaches for mapping protein sequences into embeddings suitable for various applications. As protein representation schemes, PLMs generate per-token (i.e. per-residue) representations, resulting in variable-sized outputs based on protein length. This variability poses a challenge for protein-level prediction tasks that require uniform-sized embeddings for consistent analysis across different proteins. Previous work has typically used average pooling to summarize token-level PLM outputs, but it is unclear whether this method effectively prioritizes the relevant information across token-level representations.</p><p><strong>Results: </strong>We introduce a novel method utilizing optimal transport to convert variable-length PLM outputs into fixed-length representations. We conceptualize per-token PLM outputs as samples from a probabilistic distribution and employ sliced-Wasserstein distances to map these samples against a reference set, creating a Euclidean embedding in the output space. The resulting embedding is agnostic to the length of the input and represents the entire protein. We demonstrate the superiority of our method over average pooling for several downstream prediction tasks, particularly with constrained PLM sizes, enabling smaller-scale PLMs to match or exceed the performance of average-pooled larger-scale PLMs. Our aggregation scheme is especially effective for longer protein sequences by capturing essential information that might be lost through average pooling.</p><p><strong>Availability and implementation: </strong>Our implementation code can be found at https://github.com/navid-naderi/PLM_SWE.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf060"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Protein language models (PLMs) have emerged as powerful approaches for mapping protein sequences into embeddings suitable for various applications. As protein representation schemes, PLMs generate per-token (i.e. per-residue) representations, resulting in variable-sized outputs based on protein length. This variability poses a challenge for protein-level prediction tasks that require uniform-sized embeddings for consistent analysis across different proteins. Previous work has typically used average pooling to summarize token-level PLM outputs, but it is unclear whether this method effectively prioritizes the relevant information across token-level representations.

Results: We introduce a novel method utilizing optimal transport to convert variable-length PLM outputs into fixed-length representations. We conceptualize per-token PLM outputs as samples from a probabilistic distribution and employ sliced-Wasserstein distances to map these samples against a reference set, creating a Euclidean embedding in the output space. The resulting embedding is agnostic to the length of the input and represents the entire protein. We demonstrate the superiority of our method over average pooling for several downstream prediction tasks, particularly with constrained PLM sizes, enabling smaller-scale PLMs to match or exceed the performance of average-pooled larger-scale PLMs. Our aggregation scheme is especially effective for longer protein sequences by capturing essential information that might be lost through average pooling.

Availability and implementation: Our implementation code can be found at https://github.com/navid-naderi/PLM_SWE.

基于最优转运的残基级蛋白质语言模型嵌入聚合。
动机:蛋白质语言模型(PLMs)已经成为将蛋白质序列映射到适合各种应用的嵌入中的强大方法。作为蛋白质表示方案,plm生成每个令牌(即每个残基)表示,从而产生基于蛋白质长度的可变大小输出。这种可变性对蛋白质水平预测任务提出了挑战,这些任务需要均匀大小的嵌入,以便在不同蛋白质之间进行一致的分析。以前的工作通常使用平均池来总结令牌级PLM输出,但尚不清楚这种方法是否有效地优先考虑跨令牌级表示的相关信息。结果:我们引入了一种利用最优传输将变长PLM输出转换为定长表示的新方法。我们将每个令牌PLM输出概念为来自概率分布的样本,并使用切片沃瑟斯坦距离将这些样本映射到参考集,在输出空间中创建欧几里得嵌入。所得到的嵌入与输入的长度无关,它代表了整个蛋白质。我们证明了我们的方法在几个下游预测任务中比平均池化的优越性,特别是在PLM大小受限的情况下,使小型PLM能够匹配或超过平均池化的大型PLM的性能。我们的聚合方案通过捕获可能通过平均池丢失的基本信息而对较长的蛋白质序列特别有效。可用性和实现:我们的实现代码可以在https://github.com/navid-naderi/PLM_SWE上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信