{"title":"Development and validation of machine learning models for early diagnosis and prognosis of lung adenocarcinoma using miRNA expression profiles.","authors":"Lin Lin, Yongxia Bao","doi":"10.1177/18758592241308756","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients were split into training (n = 196) and test sets (n = 133). Feature selection (Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine (SVM)) identified miRNAs distinguishing stage I LUAD. Six ML algorithms predicted pulmonary node classification. Model performance was evaluated using Receiver Operating Characteristic (ROC) curve, Precision-Recall (PR) curves, and Error Rates (CE). A prognostic model was constructed using Lasso Cox regression. Risk score plots were generated, and model performance was assessed using Kaplan-Meier (K-M) and time-dependent ROC curves. Functional enrichment analyses investigated miRNA function and mechanism.ResultsThe feature selection results identified five miRNA molecules as distinguishing characteristics between early-stage LUAD and adjacent non-cancerous tissues. A prognostic model using 13 miRNAs predicted poorer outcomes for patients with higher risk scores, supported by time-dependent ROC curves and a nomogram. Functional enrichment analysis identified cancer-related signaling pathways for the biomarkers.ConclusionML identified a diagnostic five-miRNA signature and a prognostic 13-miRNA model for LUAD, both robust and reliable.</p>","PeriodicalId":56320,"journal":{"name":"Cancer Biomarkers","volume":"42 1","pages":"18758592241308756"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/18758592241308756","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients were split into training (n = 196) and test sets (n = 133). Feature selection (Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine (SVM)) identified miRNAs distinguishing stage I LUAD. Six ML algorithms predicted pulmonary node classification. Model performance was evaluated using Receiver Operating Characteristic (ROC) curve, Precision-Recall (PR) curves, and Error Rates (CE). A prognostic model was constructed using Lasso Cox regression. Risk score plots were generated, and model performance was assessed using Kaplan-Meier (K-M) and time-dependent ROC curves. Functional enrichment analyses investigated miRNA function and mechanism.ResultsThe feature selection results identified five miRNA molecules as distinguishing characteristics between early-stage LUAD and adjacent non-cancerous tissues. A prognostic model using 13 miRNAs predicted poorer outcomes for patients with higher risk scores, supported by time-dependent ROC curves and a nomogram. Functional enrichment analysis identified cancer-related signaling pathways for the biomarkers.ConclusionML identified a diagnostic five-miRNA signature and a prognostic 13-miRNA model for LUAD, both robust and reliable.
期刊介绍:
Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion.
The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.