Structural and Functional Characterization of a Putative Type VI Secretion System Protein in Cronobacter sakazakii as a Potential Therapeutic Target: A Computational Study.
{"title":"Structural and Functional Characterization of a Putative Type VI Secretion System Protein in <i>Cronobacter sakazakii</i> as a Potential Therapeutic Target: A Computational Study.","authors":"Nurun Nahar Akter, Md Moin Uddin, Nesar Uddin, Israt Jahan Asha, Md Soyeb Uddin, Md Arju Hossain, Fahadul Alam, Siratul Kubra Shifat, Md Abu Zihad, Md Habibur Rahman","doi":"10.1177/11769343251327660","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Cronobacter sakazakii</i>, a foodborne pathogen with a fatality rate of 33%, is a rod-shaped, Gram-negative, non-spore-forming bacterium responsible for causing meningitis, bacteremia, and necrotizing enterocolitis. Despite many unknown functions of hypothetical proteins in bacterial genomes, bioinformatic techniques have successfully annotated their roles in various pathogens.</p><p><strong>Objectives: </strong>The aim of this investigation is to identify and annotate the structural and functional properties of a hypothetical protein (HP) from <i>Cronobacter sakazakii</i> 7G strain (accession no. WP_004386962.1, 277 residues) using computational tools.</p><p><strong>Methods: </strong>Multiple bioinformatic tools were used to identify the homologous protein and to construct and validate its 3D structure. A 3D model was generated using SWISS-MODEL and validated using tools, developing a reliable 3D structure. The STRING and CASTp servers provided information on protein-protein interactions and active sites, identifying functional partners.</p><p><strong>Results: </strong>The putative protein was soluble, stable, and localized in the cytoplasmic membranes, indicating its biological activity. Functional annotation identified TagJ (HsiE1) within the protein, a member of the ImpE superfamily involved in the transport of toxins and a part of the bacterial type VI secretion system (T6SS). The 3-dimensional structure of this protein was validated through molecular docking involving 6 different compounds. Among these, ceforanide demonstrated the strongest binding scores, -7.5 kcal/mol for the hypothetical protein and -7.2 kcal/mol for its main template protein (PDB ID: 4UQX.1).</p><p><strong>Conclusion: </strong>Comparative genomics study suggests that the protein found in <i>C. sakazakii</i> may be a viable therapeutic target because it seems distinctive and different from human proteins. The results of multiple sequence alignment (MSA) and molecular docking supported HP's potential involvement as a T6SS. These in silico results represent that the examined HP could be valuable for studying <i>C. sakazakii</i> infections and creating medicines to treat <i>C. sakazakii</i>-mediated disorders.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"21 ","pages":"11769343251327660"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/11769343251327660","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cronobacter sakazakii, a foodborne pathogen with a fatality rate of 33%, is a rod-shaped, Gram-negative, non-spore-forming bacterium responsible for causing meningitis, bacteremia, and necrotizing enterocolitis. Despite many unknown functions of hypothetical proteins in bacterial genomes, bioinformatic techniques have successfully annotated their roles in various pathogens.
Objectives: The aim of this investigation is to identify and annotate the structural and functional properties of a hypothetical protein (HP) from Cronobacter sakazakii 7G strain (accession no. WP_004386962.1, 277 residues) using computational tools.
Methods: Multiple bioinformatic tools were used to identify the homologous protein and to construct and validate its 3D structure. A 3D model was generated using SWISS-MODEL and validated using tools, developing a reliable 3D structure. The STRING and CASTp servers provided information on protein-protein interactions and active sites, identifying functional partners.
Results: The putative protein was soluble, stable, and localized in the cytoplasmic membranes, indicating its biological activity. Functional annotation identified TagJ (HsiE1) within the protein, a member of the ImpE superfamily involved in the transport of toxins and a part of the bacterial type VI secretion system (T6SS). The 3-dimensional structure of this protein was validated through molecular docking involving 6 different compounds. Among these, ceforanide demonstrated the strongest binding scores, -7.5 kcal/mol for the hypothetical protein and -7.2 kcal/mol for its main template protein (PDB ID: 4UQX.1).
Conclusion: Comparative genomics study suggests that the protein found in C. sakazakii may be a viable therapeutic target because it seems distinctive and different from human proteins. The results of multiple sequence alignment (MSA) and molecular docking supported HP's potential involvement as a T6SS. These in silico results represent that the examined HP could be valuable for studying C. sakazakii infections and creating medicines to treat C. sakazakii-mediated disorders.
期刊介绍:
Evolutionary Bioinformatics is an open access, peer reviewed international journal focusing on evolutionary bioinformatics. The journal aims to support understanding of organismal form and function through use of molecular, genetic, genomic and proteomic data by giving due consideration to its evolutionary context.