ACE-Net: A-line coordinates encoding network for vascular structure segmentation in ultrasound images.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Beatriz Farola Barata, Guiqiu Liao, Gianni Borghesan, Keir McCutcheon, Johan Bennett, Benoit Rosa, Michel de Mathelin, Florent Nageotte, Michalina J Gora, Jos Vander Sloten, Emmanuel Vander Poorten, Diego Dall'Alba
{"title":"ACE-Net: A-line coordinates encoding network for vascular structure segmentation in ultrasound images.","authors":"Beatriz Farola Barata, Guiqiu Liao, Gianni Borghesan, Keir McCutcheon, Johan Bennett, Benoit Rosa, Michel de Mathelin, Florent Nageotte, Michalina J Gora, Jos Vander Sloten, Emmanuel Vander Poorten, Diego Dall'Alba","doi":"10.1007/s11517-025-03323-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound (US) imaging enables the evaluation of vascular structures in real time, and it can provide morphological and pathological information during US-guided procedures. Automatic prediction of vascular structure boundaries can help clinicians in locating and measuring target structures more accurately and efficiently. Most existing US segmentation methods use per-pixel classification or regression, which require post-processing to obtain contour coordinates. In this work, we present ACE-Net, a novel approach that directly predicts the contour coordinates for every scanning line (A-line) in US images. ACE-Net combines two main modules: a boundary regression module that predicts the upper and lower coordinates of the target area for each A-line, and an A-line classification module that determines whether an A-line belongs to the target area or not. We evaluated our method on three clinical US datasets using, among others, dice similarity coefficient (DSC) and inference time as performance metrics. Our method outperformed state-of-the-art segmentation methods in inference time while achieving superior or comparable performance in DSC. ACE-Net is publicly available at https://github.com/bfarolabarata/ace-net .</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03323-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound (US) imaging enables the evaluation of vascular structures in real time, and it can provide morphological and pathological information during US-guided procedures. Automatic prediction of vascular structure boundaries can help clinicians in locating and measuring target structures more accurately and efficiently. Most existing US segmentation methods use per-pixel classification or regression, which require post-processing to obtain contour coordinates. In this work, we present ACE-Net, a novel approach that directly predicts the contour coordinates for every scanning line (A-line) in US images. ACE-Net combines two main modules: a boundary regression module that predicts the upper and lower coordinates of the target area for each A-line, and an A-line classification module that determines whether an A-line belongs to the target area or not. We evaluated our method on three clinical US datasets using, among others, dice similarity coefficient (DSC) and inference time as performance metrics. Our method outperformed state-of-the-art segmentation methods in inference time while achieving superior or comparable performance in DSC. ACE-Net is publicly available at https://github.com/bfarolabarata/ace-net .

ACE-Net:用于超声图像血管结构分割的a线坐标编码网络。
超声(US)成像可以实时评估血管结构,并可以在超声引导下提供形态学和病理学信息。血管结构边界的自动预测可以帮助临床医生更准确、高效地定位和测量目标结构。大多数现有的US分割方法使用逐像素分类或回归,这需要后处理来获得轮廓坐标。在这项工作中,我们提出了ACE-Net,这是一种新的方法,可以直接预测美国图像中每条扫描线(a线)的轮廓坐标。ACE-Net包括两个主要模块:一个是边界回归模块,用于预测每条a线的目标区域上下坐标;另一个是a线分类模块,用于确定a线是否属于目标区域。我们在三个美国临床数据集上评估了我们的方法,其中使用骰子相似系数(DSC)和推理时间作为性能指标。我们的方法在推理时间上优于最先进的分割方法,同时在DSC中实现优越或可比的性能。ACE-Net可在https://github.com/bfarolabarata/ace-net公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信