Synthetic biology routes to new and extinct natural products

IF 3.1 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Thomas J. Simpson
{"title":"Synthetic biology routes to new and extinct natural products","authors":"Thomas J. Simpson","doi":"10.1039/D5CB00047E","DOIUrl":null,"url":null,"abstract":"<p >Recent developments in genome sequencing and genetic engineering have revolutionised elucidation of biosynthetic pathways in bacteria and fungi and allowed production of new natural products and engineered strains with optimised production of new and/or preferred metabolites. The clinically important antibiotic mupirocin is a mixture of closely related pseudomonic acids produced by <em>Pseudomonas fluorescens via</em> a <em>trans</em>-AT modular PKS. Extensive gene knock-out experiments have led to the isolation of a plethora of new metabolites: both biosynthetic intermediates and shunt products. Parallel experiments, along with swapping of biosynthetic genes, with a <em>Pseudoalteromonas</em> sp. which produces the closely related thiomarinols give similar results and many new products. A genetically engineered strain of <em>P. fluorescens</em> produces high titres of a single pseudomonic acid with improved stability and antibiotic properties. Tenellin and bassianin are insecticidal fungal metabolites produced by <em>Beauvaria</em> species <em>via</em> multi-domain PKS-NRPSs. Heterologous expression in <em>Aspergillus oryzae</em> of hybrid systems produced by domain swapping between the two biosynthetic gene clusters produce many new metabolites in high yields and reveal the key elements in control of polyketide chain length and methylation, showing the potential for combinatorial biosynthesis of these and related metabolites. <em>Cryptosporiopsis</em> sp. 8999 produces three related dimeric xanthones. Gene knock-outs allow elucidation of the full biosynthetic pathway, isolation of the monomeric precursor and engineering of a strain producing only the major component of the wild-type mixture.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 5","pages":" 721-730"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cb/d5cb00047e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in genome sequencing and genetic engineering have revolutionised elucidation of biosynthetic pathways in bacteria and fungi and allowed production of new natural products and engineered strains with optimised production of new and/or preferred metabolites. The clinically important antibiotic mupirocin is a mixture of closely related pseudomonic acids produced by Pseudomonas fluorescens via a trans-AT modular PKS. Extensive gene knock-out experiments have led to the isolation of a plethora of new metabolites: both biosynthetic intermediates and shunt products. Parallel experiments, along with swapping of biosynthetic genes, with a Pseudoalteromonas sp. which produces the closely related thiomarinols give similar results and many new products. A genetically engineered strain of P. fluorescens produces high titres of a single pseudomonic acid with improved stability and antibiotic properties. Tenellin and bassianin are insecticidal fungal metabolites produced by Beauvaria species via multi-domain PKS-NRPSs. Heterologous expression in Aspergillus oryzae of hybrid systems produced by domain swapping between the two biosynthetic gene clusters produce many new metabolites in high yields and reveal the key elements in control of polyketide chain length and methylation, showing the potential for combinatorial biosynthesis of these and related metabolites. Cryptosporiopsis sp. 8999 produces three related dimeric xanthones. Gene knock-outs allow elucidation of the full biosynthetic pathway, isolation of the monomeric precursor and engineering of a strain producing only the major component of the wild-type mixture.

Abstract Image

合成生物学途径新的和已灭绝的天然产品。
基因组测序和基因工程的最新发展彻底改变了细菌和真菌生物合成途径的阐明,并允许生产新的天然产物和工程菌株,优化新的和/或首选代谢物的生产。临床重要的抗生素莫匹罗星是由荧光假单胞菌通过反式at模块PKS产生的密切相关的假单胞菌酸的混合物。广泛的基因敲除实验已经分离出大量新的代谢物:包括生物合成中间体和分流产物。平行实验,以及交换生物合成基因,与产生密切相关的硫代氨基酚的假互生单胞菌sp.产生类似的结果和许多新产品。荧光假单胞菌的基因工程菌株产生高滴度的单一假单胞酸,具有更好的稳定性和抗生素特性。Tenellin和basbasanin是白僵菌通过多结构域PKS-NRPSs产生的杀虫真菌代谢物。在米曲霉中,通过两个生物合成基因簇之间的结构域交换产生的杂种系统的异源表达产生了许多高产的新代谢物,并揭示了控制聚酮链长度和甲基化的关键元件,显示了这些和相关代谢物组合生物合成的潜力。隐孢子虫sp. 8999产生三种相关的二聚体山酮。基因敲除可以阐明完整的生物合成途径,分离单体前体,并设计只产生野生型混合物主要成分的菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信