Development of a fluorescence-based assay for RecBCD activity using functional data analysis and design of experiments.

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Adam Winnifrith, Steven R Brown, Piotr Jedryszek, C Grant, Philip E Kay, Adam M Thomas, Jacob D Bradbury, Thomas Lanyon-Hogg
{"title":"Development of a fluorescence-based assay for RecBCD activity using functional data analysis and design of experiments.","authors":"Adam Winnifrith, Steven R Brown, Piotr Jedryszek, C Grant, Philip E Kay, Adam M Thomas, Jacob D Bradbury, Thomas Lanyon-Hogg","doi":"10.1039/d4cb00291a","DOIUrl":null,"url":null,"abstract":"<p><p>Biochemical assays are essential tools in biological research and drug discovery, but optimisation of these assays is often a challenging and lengthy process due to the wide range of input variables and the complex effects of these variables on one another. Traditional 'one-factor-at-a-time' optimisation is both time-consuming and fails to explore the full range of input combinations. In contrast, the modern 'design of experiments' (DoE) approach enables simultaneous investigation of multiple input variables and their interactions, leading to more information-rich and efficient experimentation. We therefore sought to apply DoE to the optimisation of a new fluorescence-based assay for the enzyme RecBCD, a helicase-nuclease-ATPase complex involved in bacterial stress responses. A novel 'functional data analysis' (FDA) approach was used to predict the shape of RecBCD reaction curves in response to different combinations of input variables, which successfully identified assay conditions suitable for drug screening. Collectively, this work delivers a new assay for the antibiotic target RecBCD and demonstrates the potential of DoE and FDA to accelerate biochemical assay development.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00291a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biochemical assays are essential tools in biological research and drug discovery, but optimisation of these assays is often a challenging and lengthy process due to the wide range of input variables and the complex effects of these variables on one another. Traditional 'one-factor-at-a-time' optimisation is both time-consuming and fails to explore the full range of input combinations. In contrast, the modern 'design of experiments' (DoE) approach enables simultaneous investigation of multiple input variables and their interactions, leading to more information-rich and efficient experimentation. We therefore sought to apply DoE to the optimisation of a new fluorescence-based assay for the enzyme RecBCD, a helicase-nuclease-ATPase complex involved in bacterial stress responses. A novel 'functional data analysis' (FDA) approach was used to predict the shape of RecBCD reaction curves in response to different combinations of input variables, which successfully identified assay conditions suitable for drug screening. Collectively, this work delivers a new assay for the antibiotic target RecBCD and demonstrates the potential of DoE and FDA to accelerate biochemical assay development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信