Design of a patient simulator for clinicians training in mechanical ventilation: SimVep.

Q3 Engineering
Andres M Valencia, Ivan Ruiz, Jose I García, Alexander Galvis
{"title":"Design of a patient simulator for clinicians training in mechanical ventilation: SimVep.","authors":"Andres M Valencia, Ivan Ruiz, Jose I García, Alexander Galvis","doi":"10.1080/03091902.2025.2484672","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory diseases are increasingly prevalent worldwide, often leading to critical conditions that require mechanical ventilation for life support. Proper management of these cases demands that clinicians be highly trained to respond effectively to various ventilatory manoeuvres during the recovery process. In this context, training tools for medical staff in mechanical ventilation become essential. Countries with emerging economies, such as Colombia, frequently face technological and economic limitations that restrict access to advanced medical training resources. As a result, the development of physical and virtual patient simulators presents a viable solution, as they can be designed using accessible technologies to support training in low-resource settings. This study presents SimVep, a patient simulator designed to emulate the physiological behaviour of obstructive and restrictive pulmonary conditions. The primary objective of SimVep is to enhance clinician training in mechanical ventilation, enabling healthcare professionals to acquire critical skills and improve patient outcomes in real-world clinical environments.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2484672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory diseases are increasingly prevalent worldwide, often leading to critical conditions that require mechanical ventilation for life support. Proper management of these cases demands that clinicians be highly trained to respond effectively to various ventilatory manoeuvres during the recovery process. In this context, training tools for medical staff in mechanical ventilation become essential. Countries with emerging economies, such as Colombia, frequently face technological and economic limitations that restrict access to advanced medical training resources. As a result, the development of physical and virtual patient simulators presents a viable solution, as they can be designed using accessible technologies to support training in low-resource settings. This study presents SimVep, a patient simulator designed to emulate the physiological behaviour of obstructive and restrictive pulmonary conditions. The primary objective of SimVep is to enhance clinician training in mechanical ventilation, enabling healthcare professionals to acquire critical skills and improve patient outcomes in real-world clinical environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信