{"title":"Covariate-Balancing-Aware Interpretable Deep Learning Models for Treatment Effect Estimation.","authors":"Kan Chen, Qishuo Yin, Qi Long","doi":"10.1007/s12561-023-09394-6","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating treatment effects is of great importance for many biomedical applications with observational data. Particularly, interpretability of the treatment effects is preferable for many biomedical researchers. In this paper, we first provide a theoretical analysis and derive an upper bound for the bias of average treatment effect (ATE) estimation under the strong ignorability assumption. Derived by leveraging appealing properties of the weighted energy distance, our upper bound is tighter than what has been reported in the literature. Motivated by the theoretical analysis, we propose a novel objective function for estimating the ATE that uses the energy distance balancing score and hence does not require the correct specification of the propensity score model. We also leverage recently developed neural additive models to improve interpretability of deep learning models used for potential outcome prediction. We further enhance our proposed model with an energy distance balancing score weighted regularization. The superiority of our proposed model over current state-of-the-art methods is demonstrated in semi-synthetic experiments using two benchmark datasets, namely, IHDP and ACIC, as well as is examined through the study of the effect of smoking on the blood level of cadmium using NHANES.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"17 1","pages":"132-150"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-023-09394-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating treatment effects is of great importance for many biomedical applications with observational data. Particularly, interpretability of the treatment effects is preferable for many biomedical researchers. In this paper, we first provide a theoretical analysis and derive an upper bound for the bias of average treatment effect (ATE) estimation under the strong ignorability assumption. Derived by leveraging appealing properties of the weighted energy distance, our upper bound is tighter than what has been reported in the literature. Motivated by the theoretical analysis, we propose a novel objective function for estimating the ATE that uses the energy distance balancing score and hence does not require the correct specification of the propensity score model. We also leverage recently developed neural additive models to improve interpretability of deep learning models used for potential outcome prediction. We further enhance our proposed model with an energy distance balancing score weighted regularization. The superiority of our proposed model over current state-of-the-art methods is demonstrated in semi-synthetic experiments using two benchmark datasets, namely, IHDP and ACIC, as well as is examined through the study of the effect of smoking on the blood level of cadmium using NHANES.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.